• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Optimal Reach Estimation and Metric Learning

Aamari, Eddie; Berenfeld, Clément; Levrard, Clément (2022), Optimal Reach Estimation and Metric Learning. https://basepub.dauphine.psl.eu/handle/123456789/23324

View/Open
Optimal_Reach_Estimation_and_Metric_Learning.pdf (657.5Kb)
Type
Document de travail / Working paper
Date
2022
Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSL
Published in
Paris
Pages
47
Metadata
Show full item record
Author(s)
Aamari, Eddie cc
Laboratoire de Probabilités, Statistique et Modélisation [LPSM (UMR_8001)]
Berenfeld, Clément
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Levrard, Clément
Laboratoire de Probabilités, Statistique et Modélisation [LPSM (UMR_8001)]
Abstract (EN)
We study the estimation of the reach, an ubiquitous regularity parameter in manifold estimation and geometric data analysis. Given an i.i.d. sample over an unknown d-dimensional Ck-smooth submanifold of RD , we provide optimal nonasymptotic bounds for the estimation of its reach. We build upon a formulation of the reach in terms of maximal curvature on one hand, and geodesic metric distortion on the other hand. The derived rates are adaptive, with rates depending on whether the reach of M arises from curvature or from a bottleneck structure. In the process, we derive optimal geodesic metric estimation bounds.

Related items

Showing items related by title and author.

  • Thumbnail
    From Graph Centrality to Data Depth 
    Aamari, Eddie; Arias-Castro, Ery; Berenfeld, Clément (2021) Document de travail / Working paper
  • Thumbnail
    Estimating the reach of a manifold via its convexity defect function 
    Berenfeld, Clément; Harvey, John; Hoffmann, Marc; Krishnan, Shankar (2021) Article accepté pour publication ou publié
  • Thumbnail
    Density estimation on an unknown submanifold 
    Berenfeld, Clément; Hoffmann, Marc (2019) Document de travail / Working paper
  • Thumbnail
    Interpretable and accurate prediction models for metagenomics data 
    Prifti, Edi; Chevaleyre, Yann; Hanczar, Blaise; Belda, Eugeni; Danchin, Antoine; Clément, Karine (2020) Article accepté pour publication ou publié
  • Thumbnail
    Deep Learning for Metagenomic Data: using 2D Embeddings and Convolutional Neural Networks 
    Thanh Hai, Nguyen; Chevaleyre, Yann; Prifti, Edi; Sokolovska, Nataliya; Zucker, Jean-Daniel (2017) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo