Parabolic methods for ultraspherical interpolation inequalities
Dolbeault, Jean; Zhang, An (2023), Parabolic methods for ultraspherical interpolation inequalities, Discrete and Continuous Dynamical Systems. Series A, 43, 3&4, p. 1347-1365. 10.3934/dcds.2022080
View/ Open
Type
Article accepté pour publication ou publiéDate
2023Journal name
Discrete and Continuous Dynamical Systems. Series AVolume
43Number
3&4Pages
1347-1365
Publication identifier
Metadata
Show full item recordAuthor(s)
Dolbeault, Jean
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Zhang, An
School of Mathematical Science [Claremont]
Abstract (EN)
The carré du champ method is a powerful technique for proving interpolation inequalities with explicit constants in presence of a non-trivial metric on a manifold. The method applies to some classical Gagliardo-Nirenberg-Sobolev inequalities on the sphere, with optimal constants. Very nonlinear regimes close to the critical Sobolev exponent can be covered using nonlinear parabolic flows of porous medium or fast diffusion type. Considering power law weights is a natural question in relation with symmetry breaking issues for Caffarelli-Kohn-Nirenberg inequalities, but regularity estimates for a complete justification of the computation are missing. We provide the first example of a complete parabolic proof based on a nonlinear flow by regularizing the singularity induced by the weight. Our result is established in the simplified framework of a diffusion built on the ultraspherical operator, which amounts to reduce the problem to functions on the sphere with simple symmetry properties.Subjects / Keywords
Gagliardo-Nirenberg-Sobolev inequalities; Caffarelli-Kohn-Nirenberg inequalities; interpolation; sphere; flows; optimal constants; weights; ultraspherical operator; carré du champ method; entropy methods; nonlinear parabolic equations; porous media; fast diffusion; regularityRelated items
Showing items related by title and author.
-
Dolbeault, Jean; Garcia-Huidobro, Marta; Manásevich, Raul (2019) Document de travail / Working paper
-
Dolbeault, Jean; Garcia-Huidobro, Marta; Manásevich, Raul (2020) Article accepté pour publication ou publié
-
Dolbeault, Jean; Esteban, Maria J.; Kowalczyk, Michal; Loss, Michael (2014) Chapitre d'ouvrage
-
Loss, Michael; Kowalczyk, Michal; Esteban, Maria J.; Dolbeault, Jean (2013) Article accepté pour publication ou publié
-
Dolbeault, Jean; Zhang, An (2016) Article accepté pour publication ou publié