• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Rectification of a deep water model for surface gravity waves

Duchêne, Vincent; Melinand, Benjamin (2022), Rectification of a deep water model for surface gravity waves. https://basepub.dauphine.psl.eu/handle/123456789/23289

View/Open
RWW2.pdf (2.885Mb)
Type
Document de travail / Working paper
Date
2022
Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSL
Published in
Paris
Pages
52
Metadata
Show full item record
Author(s)
Duchêne, Vincent cc
Institut de Recherche Mathématique de Rennes [IRMAR]
Melinand, Benjamin
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
In this work we discuss an approximate model for the propagation of deep irrotational water waves; specifically the model obtained when retaining only quadratic nonlinearities in the water waves system under the Zakharov-Craig-Sulem formulation. We argue that the initial-value problem associated with this system is most likely ill-posed in finite-regularity spaces, explaining spurious oscillations reported in numerical simulations for instance in GN07, and thus agreeing with the conclusion of ABN14 although not on the proposed instability mechanism. We show that the system can be "rectified". Indeed, through the introduction of suitable regularizing operators we can recover well-posedness properties without sacrificing other desirable features such as a canonical Hamiltonian structure, cubic accuracy as an asymptotic model, and efficient numerical integration. Our study is supported with detailed and reproducible numerical simulations.
Subjects / Keywords
Water waves; asymptotic model; ill-posedness; regularization; numerical experiments

Related items

Showing items related by title and author.

  • Thumbnail
    Surface water waves as saddle points of the energy 
    Buffoni, Boris; Séré, Eric; Toland, John (2003) Article accepté pour publication ou publié
  • Thumbnail
    Training Compact Deep Learning Models for Video Classification Using Circulant Matrices 
    Araújo, Alexandre; Negrevergne, Benjamin; Chevaleyre, Yann; Atif, Jamal (2018) Communication / Conférence
  • Thumbnail
    Traveling waves for a thin film with gravity and insoluble surfactant 
    Hillairet, Matthieu; Escher, Joachim; Walker, Christoph; Laurençot, Philippe (2015) Article accepté pour publication ou publié
  • Thumbnail
    Large deviations for random surfaces: the hyperbolic nature of Liouville Field Theory 
    Vargas, Vincent; Rhodes, Rémi; Lacoin, Hubert (2014) Document de travail / Working paper
  • Thumbnail
    Assessment of the effects of Best Environmental Practices on reducing pesticide contamination in surface water, using multi-criteria modelling combined with a GIS 
    Probst, Anne; Uny, Daniel; Almeida Dias, Juscelino; Macary, Francis (2013) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo