Long Time Behaviour of the Discrete Volume Preserving Mean Curvature Flow in the Flat Torus
De Gennaro, Danièle; Kubin, Anna (2022), Long Time Behaviour of the Discrete Volume Preserving Mean Curvature Flow in the Flat Torus. https://basepub.dauphine.psl.eu/handle/123456789/23266
Type
Document de travail / Working paperDate
2022Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSLPublished in
Paris
Pages
37
Metadata
Show full item recordAuthor(s)
De Gennaro, DanièleCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Kubin, Anna
Politecnico di Torino = Polytechnic of Turin [Polito]
Abstract (EN)
We show that the discrete approximate volume preserving mean curvature flow in the flat torus T N starting near a strictly stable critical set E of the perimeter converges in the long time to a translate of E exponentially fast. As an intermediate result we establish a new quantitative estimate of Alexandrov type for periodic strictly stable constant mean curvature hypersurfaces. Finally, in the two dimensional case a complete characterization of the long time behaviour of the discrete flow with arbitrary initial sets of finite perimeter is provided.Subjects / Keywords
Geometric evolution equations; Minimizing movementRelated items
Showing items related by title and author.
-
De Gennaro, Danièle; Kubin, Andrea; Kubin, Anna (2023) Article accepté pour publication ou publié
-
Chambolle, Antonin; de Gennaro, Daniele; Morini, Massimiliano (2022) Document de travail / Working paper
-
Cardaliaguet, Pierre; Porretta, Alessio (2019) Article accepté pour publication ou publié
-
Bernard, Patrick; Labrousse, Clémence (2016) Article accepté pour publication ou publié
-
Aksamit, Anna; Deng, Shuoqing; Obloj , Jan; Tan, Xiaolu (2019) Article accepté pour publication ou publié