• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Cutoff for the non reversible SSEP with reservoirs

Tran, Hong-Quan (2022), Cutoff for the non reversible SSEP with reservoirs. https://basepub.dauphine.psl.eu/handle/123456789/23255

View/Open
cutoffTran.pdf (249.8Kb)
Type
Document de travail / Working paper
Date
2022
Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSL
Published in
Paris
Pages
23
Metadata
Show full item record
Author(s)
Tran, Hong-Quan
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We consider the Symmetric Simple Exclusion Process (SSEP) on the segment with two reservoirs of densities p,q∈(0,1) at the two endpoints. We show that the system exhibits cutoff with a diffusive window, thus confirming a conjecture of Gantert, Nestoridi, and Schmid in \cite{Gantert2020}. In particular, our result covers the regime p≠q, where the process is not reversible and there is no known explicit formula for the invariant measure. Our proof exploits the information percolation framework introduced by Lubetzky and Sly, the negative dependence of the system, and an anticoncentration inequality at the conditional level. We believe this approach is applicable to other models.

Related items

Showing items related by title and author.

  • Thumbnail
    Regularity theory for the spatially homogeneous Boltzmann equation with cut-off 
    Mouhot, Clément; Villani, Cédric (2004) Article accepté pour publication ou publié
  • Thumbnail
    Spectral gap and cutoff phenomenon for the Gibbs sampler of ∇φ interfaces with convex potential 
    Caputo, Pietro; Labbé, Cyril; Lacoin, Hubert (2020) Document de travail / Working paper
  • Thumbnail
    The rounding of the phase transition for disordered pinning with stretched exponential tails 
    Lacoin, Hubert (2017) Article accepté pour publication ou publié
  • Thumbnail
    A note on phase transitions for the Smoluchowski equation with dipolar potential 
    Liu, Jian-Guo; Frouvelle, Amic; Degond, Pierre (2012) Communication / Conférence
  • Thumbnail
    Universality of cutoff for exclusion with reservoirs 
    Salez, Justin (2022) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo