
Uniform in time propagation of chaos for a Moran model
Cloez, Bertrand; Corujo, Josué (2022), Uniform in time propagation of chaos for a Moran model, Stochastic Processes and their Applications, 154, p. 251-285. 10.1016/j.spa.2022.09.006
View/ Open
Type
Article accepté pour publication ou publiéDate
2022Journal name
Stochastic Processes and their ApplicationsVolume
154Publisher
Elsevier
Pages
251-285
Publication identifier
Metadata
Show full item recordAuthor(s)
Cloez, BertrandMathématiques, Informatique et STatistique pour l'Environnement et l'Agronomie [MISTEA]
Corujo, Josué

CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
This article studies the limit of the empirical distribution induced by a mutation-selection multi-allelic Moran model. Our results include a uniform in time bound for the propagation of chaos in Lp of order N−−√, and the proof of the asymptotic normality with zero mean and explicit variance, when the number of individuals tend towards infinity, for the approximation error between the empirical distribution and its limit. Additionally, we explore the interpretation of this Moran model as a particle process whose empirical probability measure approximates a quasi-stationary distribution, in the same spirit as the Fleming\,--\,Viot particle systems.Subjects / Keywords
Multi-allelic Moran model; Feynman–Kac formulae; Propagation of chaos; Quasi-stationary distribution; Fleming–Viot particle system; Asymptotic normalityRelated items
Showing items related by title and author.
-
Cloez, Bertrand; Corujo, Josué (2021) Document de travail / Working paper
-
Chen, Fan; Ren, Zhenjie; Wang, Songbo (2022) Document de travail / Working paper
-
Corujo, Josué (2021) Document de travail / Working paper
-
Mouhot, Clément; Mischler, Stéphane (2010) Document de travail / Working paper
-
CORUJO RODRíGUEZ, Josué (2021-12-03) Thèse