• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

A stochastic thermalization of the Discrete Nonlinear Schrödinger Equation

Hannani, Amirali; Olla, Stefano (2022), A stochastic thermalization of the Discrete Nonlinear Schrödinger Equation, Stochastics and Partial Differential Equations: Analysis and Computations, p. 32. 10.1007/s40072-022-00263-9

View/Open
Soliton-so53.pdf (454.8Kb)
Type
Article accepté pour publication ou publié
Date
2022
Journal name
Stochastics and Partial Differential Equations: Analysis and Computations
Publisher
Springer
Pages
32
Publication identifier
10.1007/s40072-022-00263-9
Metadata
Show full item record
Author(s)
Hannani, Amirali
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Olla, Stefano cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We introduce a mass conserving stochastic perturbation of the discrete nonlinear Schrödinger equation that models the action of a heat bath at a given temperature. We prove that the corresponding canonical Gibbs distribution is the unique invariant measure. In the onedimensional cubic focusing case on the torus, we prove that in the limit for large time, continuous approximation, and low temperature, the solution converges to the steady wave of the continuous equation that minimizes the energy for a given mass.
Subjects / Keywords
Discrete Nonlinear Schrödinger Equation; Thermalization; Large Deviations; Hypoelliptic diffusions; Solitary waves

Related items

Showing items related by title and author.

  • Thumbnail
    A stochastic thermalization of the Discrete Nonlinear Schrödinger Equation 
    Hannani, Amirali; Olla, Stefano (2021) Document de travail / Working paper
  • Thumbnail
    Asymptotics of the solutions of the stochastic lattice wave equation 
    Ryzhik, Lenya; Olla, Stefano; Komorowski, Tomasz (2013) Article accepté pour publication ou publié
  • Thumbnail
    The Nonlinear Schrödinger Equation for Orthonormal Functions: Existence of Ground States 
    Gontier, David; Lewin, Mathieu; Nazar, Faizan Q. (2021) Article accepté pour publication ou publié
  • Thumbnail
    The Nonlinear Schrödinger Equation for Orthonormal Functions : Existence of Ground States 
    Gontier, David; Lewin, Mathieu; Nazar, Faizan Q. (2021) Article accepté pour publication ou publié
  • Thumbnail
    Probabilistic Methods for Discrete Nonlinear Schrödinger Equations 
    Chatterjee, Sourav; Kirkpatrick, Kay (2012) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo