
A stochastic thermalization of the Discrete Nonlinear Schrödinger Equation
Hannani, Amirali; Olla, Stefano (2022), A stochastic thermalization of the Discrete Nonlinear Schrödinger Equation, Stochastics and Partial Differential Equations: Analysis and Computations, p. 32. 10.1007/s40072-022-00263-9
View/ Open
Type
Article accepté pour publication ou publiéDate
2022Journal name
Stochastics and Partial Differential Equations: Analysis and ComputationsPublisher
Springer
Pages
32
Publication identifier
Metadata
Show full item recordAuthor(s)
Hannani, AmiraliCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Olla, Stefano

CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We introduce a mass conserving stochastic perturbation of the discrete nonlinear Schrödinger equation that models the action of a heat bath at a given temperature. We prove that the corresponding canonical Gibbs distribution is the unique invariant measure. In the onedimensional cubic focusing case on the torus, we prove that in the limit for large time, continuous approximation, and low temperature, the solution converges to the steady wave of the continuous equation that minimizes the energy for a given mass.Subjects / Keywords
Discrete Nonlinear Schrödinger Equation; Thermalization; Large Deviations; Hypoelliptic diffusions; Solitary wavesRelated items
Showing items related by title and author.
-
Hannani, Amirali; Olla, Stefano (2021) Document de travail / Working paper
-
Ryzhik, Lenya; Olla, Stefano; Komorowski, Tomasz (2013) Article accepté pour publication ou publié
-
Gontier, David; Lewin, Mathieu; Nazar, Faizan Q. (2021) Article accepté pour publication ou publié
-
Gontier, David; Lewin, Mathieu; Nazar, Faizan Q. (2021) Article accepté pour publication ou publié
-
Chatterjee, Sourav; Kirkpatrick, Kay (2012) Article accepté pour publication ou publié