
Towards Off-the-Grid Algorithms for Total Variation Regularized Inverse Problems
De Castro, Yohann; Duval, Vincent; Petit, Romain (2022), Towards Off-the-Grid Algorithms for Total Variation Regularized Inverse Problems, Journal of Mathematical Imaging and Vision, p. 25. 10.1007/s10851-022-01115-w
View/ Open
Type
Article accepté pour publication ou publiéDate
2022Journal name
Journal of Mathematical Imaging and VisionPublisher
Springer
Pages
25
Publication identifier
Metadata
Show full item recordAuthor(s)
De Castro, YohannInstitut Camille Jordan [ICJ]
Duval, Vincent

CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Petit, Romain
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We introduce an algorithm to solve linear inverse problems regularized with the total (gradient) variation in a gridless manner. Contrary to most existing methods, that produce an approximate solution which is piecewise constant on a fixed mesh, our approach exploits the structure of the solutions and consists in iteratively constructing a linear combination of indicator functions of simple polygons.Subjects / Keywords
Total variation; Inverse problems; Off-the-grid imagingRelated items
Showing items related by title and author.
-
De Castro, Yohann; Duval, Vincent; Petit, Romain (2021) Communication / Conférence
-
Tovey, Robert; Duval, Vincent (2022) Document de travail / Working paper
-
Catala, Paul; Duval, Vincent; Peyré, Gabriel (2017) Article accepté pour publication ou publié
-
Catala, Paul; Duval, Vincent; Peyré, Gabriel (2019) Article accepté pour publication ou publié
-
Catala, Paul; Duval, Vincent; Peyré, Gabriel (2017) Communication / Conférence