Mass concentration in rescaled first order integral functionals
hal.structure.identifier | Laboratoire Analyse et Mathématiques Appliquées [LAMA] | |
dc.contributor.author | Monteil, Antonin
HAL ID: 748327 | |
hal.structure.identifier | CEntre de REcherches en MAthématiques de la DEcision [CEREMADE] | |
dc.contributor.author | Pegon, Paul | |
dc.date.accessioned | 2022-11-22T15:43:13Z | |
dc.date.available | 2022-11-22T15:43:13Z | |
dc.date.issued | 2022 | |
dc.identifier.uri | https://basepub.dauphine.psl.eu/handle/123456789/23176 | |
dc.language.iso | en | en |
dc.subject | Γ-convergence | en |
dc.subject | semicontinuity | en |
dc.subject | integral functionals | en |
dc.subject | convergence of measures | en |
dc.subject | concentration-compactness | en |
dc.subject | Cahn-Hilliard fluids | en |
dc.subject | branched transport | en |
dc.subject.ddc | 515 | en |
dc.title | Mass concentration in rescaled first order integral functionals | en |
dc.type | Document de travail / Working paper | |
dc.description.abstracten | We consider first order local minimization problems min ∫ f(u,∇u) under a mass constraint ∫ u = m∈R. We prove that the minimal energy function H(m) is always concave on (−∞, 0) and (0, +∞), and that relevant rescalings of the energy, depending on a small parameter ε, Γ-converge in the weak topology of measures towards the H-mass, defined for atomic measures Σᵢ mᵢ δxᵢ as Σᵢ H(mᵢ). We also consider space dependent Lagrangians f(x,u,∇u), which cover the case of space dependent H-masses Σᵢ H(xᵢ,mᵢ), and also the case of a family of Lagrangians (fε) converging as ε → 0. The Γ-convergence result holds under mild assumptions on f, and covers several situations including homogeneous H-masses in any dimension N ≥ 2 for exponents above a critical threshold, and all concave H-masses in dimension N = 1. Our result yields in particular the concentration of Cahn-Hilliard fluids into droplets, and is related to the approximation of branched transport by elliptic energies. | en |
dc.publisher.city | Paris | en |
dc.identifier.citationpages | 38 | en |
dc.relation.ispartofseriestitle | Cahier de recherche CEREMADE, Université Paris Dauphine-PSL | en |
dc.subject.ddclabel | Analyse | en |
dc.identifier.citationdate | 2022 | |
dc.description.ssrncandidate | non | |
dc.description.halcandidate | non | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.date.updated | 2022-11-22T15:40:24Z | |
hal.author.function | aut | |
hal.author.function | aut |