
The Nonlinear Schrödinger Equation for Orthonormal Functions : Existence of Ground States
Gontier, David; Lewin, Mathieu; Nazar, Faizan Q. (2021), The Nonlinear Schrödinger Equation for Orthonormal Functions : Existence of Ground States, Archive for Rational Mechanics and Analysis, 240, 3, p. 1203-1254. 10.1007/s00205-021-01634-7
View/ Open
Type
Article accepté pour publication ou publiéDate
2021Journal name
Archive for Rational Mechanics and AnalysisVolume
240Number
3Publisher
Springer
Pages
1203-1254
Publication identifier
Metadata
Show full item recordAuthor(s)
Gontier, David
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Lewin, Mathieu

Nazar, Faizan Q.
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We study the nonlinear Schrödinger equation for systems of N orthonormal functions. We prove the existence of ground states for all N when the exponent p of the non linearity is not too large, and for an infinite sequence Nj tending to infinity in the whole range of possible p’s, in dimensions d≥1. This allows us to prove that translational symmetry is broken for a quantum crystal in the Kohn–Sham model with a large Dirac exchange constant.Related items
Showing items related by title and author.
-
Gontier, David; Lewin, Mathieu; Nazar, Faizan Q.; Abbad, Narima (2021) Article accepté pour publication ou publié
-
Frank, Rupert L.; Gontier, David; Lewin, Mathieu (2020) Document de travail / Working paper
-
Frank, Rupert L.; Gontier, David; Lewin, Mathieu (2021) Article accepté pour publication ou publié
-
Gravejat, Philippe; Lewin, Mathieu; Séré, Eric (2009) Article accepté pour publication ou publié
-
Berestycki, Henri; Lions, Pierre-Louis (1983) Article accepté pour publication ou publié