• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Adaptive nonparametric estimation in the functional linear model with functional output

Chagny, Gaëlle; Meynaoui, Anouar; Roche, Angelina (2022), Adaptive nonparametric estimation in the functional linear model with functional output. https://basepub.dauphine.psl.eu/handle/123456789/23109

View/Open
FunctionalRegression.pdf (1.098Mb)
Type
Document de travail / Working paper
Date
2022
Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSL
Published in
Paris
Pages
39
Metadata
Show full item record
Author(s)
Chagny, Gaëlle
Laboratoire de Mathématiques Raphaël Salem [LMRS]
Meynaoui, Anouar cc
Laboratoire de Mathématiques Raphaël Salem [LMRS]
Roche, Angelina
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
In this paper, we consider a functional linear regression model, where both the covariate and the response variable are functional random variables. We address the problem of optimal nonparametric estimation of the conditional expectation operator in this model. A collection of projection estimators over finite dimensional subspaces is first introduce. We provide a non-asymptotic bias-variance decomposition for the Mean Square Prediction error in the case where these subspaces are generated by the (empirical) PCA functional basis. The automatic trade-off is realized thanks to a model selection device which selects the best projection dimensions: the penalized contrast estimator satisfies an oracle-type inequality and is thus optimal in an adaptive point of view. These upper-bounds allow us to derive convergence rates over ellipsoidal smoothness spaces. The rates are shown to be optimal in the minimax sense: they match with a lower bound of the minimax risk, which is also proved. Finally, we conduct a numerical study, over simulated data and over two real-data sets.

Related items

Showing items related by title and author.

  • Thumbnail
    Adaptive nonparametric estimation of a component density in a two-class mixture model 
    Chagny, Gaëlle; Channarond, Antoine; Hoang, Van Ha; Roche, Angelina (2022) Article accepté pour publication ou publié
  • Thumbnail
    Adaptive estimation of the hazard rate with multiplicative censoring 
    Chagny, Gaëlle; Comte, Fabienne; Roche, Angelina (2017) Article accepté pour publication ou publié
  • Thumbnail
    Variable selection and estimation in multivariate functional linear regression via the Lasso 
    Roche, Angelina (2018) Document de travail / Working paper
  • Thumbnail
    Modèle de mélange binomial négatif bivarié pour l'analyse de données RNA-Seq 
    Sautreuil, Mathilde; Bérard, Caroline; Chagny, Gaëlle; Channarond, Antoine; Roche, Angelina; Vergne, Nicolas (2018) Communication / Conférence
  • Thumbnail
    New perspectives in smoothing : minimax estimation of the mean and principal components ofdiscretized functional data. 
    Roche, Angelina (2022) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo