• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Convergence rate of general entropic optimal transport costs

Carlier, Guillaume; Pegon, Paul; Tamanini, Luca (2022), Convergence rate of general entropic optimal transport costs. https://basepub.dauphine.psl.eu/handle/123456789/23106

View/Open
CPT22_final.pdf (622.8Kb)
Type
Document de travail / Working paper
Date
2022
Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSL
Published in
Paris
Pages
31
Metadata
Show full item record
Author(s)
Carlier, Guillaume
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Pegon, Paul
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Tamanini, Luca
Bocconi Institute for Data Science and Analytics [BIDSA]
Abstract (EN)
We investigate the convergence rate of the optimal entropic cost vε to the optimal transport cost as the noise parameter ε↓0. We show that for a large class of cost functions c on Rd×Rd (for which optimal plans are not necessarily unique or induced by a transport map) and compactly supported and L᪲ marginals, one has vε − v0 = d/2 εlog(1/ε) + O(ε). Upper bounds are obtained by a block approximation strategy and an integral variant of Alexandrov's theorem. Under an infinitesimal twist condition on c, i.e. invertibility of ∇²xy c, we get the lower bound by establishing a quadratic detachment of the duality gap in d dimensions thanks to Minty's trick.
Subjects / Keywords
Optimal transport; Entropic regularization; Schrödinger problem; Convex analysis; Entropy dimension.

Related items

Showing items related by title and author.

  • Thumbnail
    Convergence of Entropic Schemes for Optimal Transport and Gradient Flows 
    Carlier, Guillaume; Duval, Vincent; Peyré, Gabriel; Schmitzer, Bernhard (2017) Article accepté pour publication ou publié
  • Thumbnail
    Lipschitz Continuity of the Schrödinger Map in Entropic Optimal Transport 
    Carlier, Guillaume; Chizat, Lenaic; Laborde, Maxime (2022) Document de travail / Working paper
  • Thumbnail
    A Numerical Method to Solve Multi-Marginal Optimal Transport Problems with Coulomb Cost 
    Benamou, Jean-David; Carlier, Guillaume; Nenna, Luca (2017) Chapitre d'ouvrage
  • Thumbnail
    Computation of Cournot-Nash equilibria by entropic regularization 
    Blanchet, Adrien; Carlier, Guillaume; Nenna, Luca (2018) Article accepté pour publication ou publié
  • Thumbnail
    Optimal spatial pricing strategies with transportation costs 
    Carlier, Guillaume; Buttazzo, Giuseppe (2010) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo