
Convergence rate of general entropic optimal transport costs
Carlier, Guillaume; Pegon, Paul; Tamanini, Luca (2022), Convergence rate of general entropic optimal transport costs. https://basepub.dauphine.psl.eu/handle/123456789/23106
View/ Open
Type
Document de travail / Working paperDate
2022Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSLPublished in
Paris
Pages
31
Metadata
Show full item recordAuthor(s)
Carlier, GuillaumeCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Pegon, Paul
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Tamanini, Luca
Bocconi Institute for Data Science and Analytics [BIDSA]
Abstract (EN)
We investigate the convergence rate of the optimal entropic cost vε to the optimal transport cost as the noise parameter ε↓0. We show that for a large class of cost functions c on Rd×Rd (for which optimal plans are not necessarily unique or induced by a transport map) and compactly supported and L᪲ marginals, one has vε − v0 = d/2 εlog(1/ε) + O(ε). Upper bounds are obtained by a block approximation strategy and an integral variant of Alexandrov's theorem. Under an infinitesimal twist condition on c, i.e. invertibility of ∇²xy c, we get the lower bound by establishing a quadratic detachment of the duality gap in d dimensions thanks to Minty's trick.Subjects / Keywords
Optimal transport; Entropic regularization; Schrödinger problem; Convex analysis; Entropy dimension.Related items
Showing items related by title and author.
-
Carlier, Guillaume; Duval, Vincent; Peyré, Gabriel; Schmitzer, Bernhard (2017) Article accepté pour publication ou publié
-
Carlier, Guillaume; Chizat, Lenaic; Laborde, Maxime (2022) Document de travail / Working paper
-
Benamou, Jean-David; Carlier, Guillaume; Nenna, Luca (2017) Chapitre d'ouvrage
-
Blanchet, Adrien; Carlier, Guillaume; Nenna, Luca (2018) Article accepté pour publication ou publié
-
Carlier, Guillaume; Buttazzo, Giuseppe (2010) Communication / Conférence