• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Asymptotic of the Discrete Volume-Preserving Fractional Mean Curvature Flow via a Nonlocal Quantitative Alexandrov Theorem

De Gennaro, Danièle; Kubin, Andrea; Kubin, Anna (2023), Asymptotic of the Discrete Volume-Preserving Fractional Mean Curvature Flow via a Nonlocal Quantitative Alexandrov Theorem, Nonlinear Analysis, 228, p. 27. 10.1016/j.na.2022.113200

View/Open
DeGKuKu22.pdf (365.3Kb)
Type
Article accepté pour publication ou publié
Date
2023
Journal name
Nonlinear Analysis
Volume
228
Publisher
Elsevier
Published in
Paris
Pages
27
Publication identifier
10.1016/j.na.2022.113200
Metadata
Show full item record
Author(s)
De Gennaro, Danièle
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Kubin, Andrea
Technische Universität München [TUM]
Kubin, Anna
Politecnico di Torino
Abstract (EN)
We characterize the long time behaviour of a discrete-in-time approximation of the volume preserving fractional mean curvature flow. In particular, we prove that the discrete flow starting from any bounded set of finite fractional perimeter converges exponentially fast to a single ball. As an intermediate result we establish a quantitative Alexandrov type estimate for normal deformations of a ball. Finally, we provide existence for flat flows as limit points of the discrete flow when the time discretization parameter tends to zero.
Subjects / Keywords
Geometric evolutions; Fractional mean curvature; Alexandrov theorem; Minimizing movements; Variational methods

Related items

Showing items related by title and author.

  • Thumbnail
    Long Time Behaviour of the Discrete Volume Preserving Mean Curvature Flow in the Flat Torus 
    De Gennaro, Danièle; Kubin, Anna (2022) Document de travail / Working paper
  • Thumbnail
    Minimizing Movements for Anisotropic and Inhomogeneous Mean Curvature Flows 
    Chambolle, Antonin; de Gennaro, Daniele; Morini, Massimiliano (2022) Document de travail / Working paper
  • Thumbnail
    Level set approach for fractional mean curvature flows 
    Imbert, Cyril (2009) Article accepté pour publication ou publié
  • Thumbnail
    Anisotropic and crystalline mean curvature flow of mean-convex sets 
    Chambolle, Antonin; Novaga, Matteo (2022) Article accepté pour publication ou publié
  • Thumbnail
    TPFA Finite Volume Approximation of Wasserstein Gradient Flows 
    Natale, Andrea; Todeschi, Gabriele (2020) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo