• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Sparse mixture of von Mises-Fisher distribution

Barbaro, Florian; Rossi, Fabrice (2021), Sparse mixture of von Mises-Fisher distribution, ESANN 2021 - European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, i6doc.com, p. 263-268. 10.14428/esann/2021.ES2021-115

Type
Communication / Conférence
External document link
https://www.esann.org/sites/default/files/proceedings/2021/ES2021-115.pdf
Date
2021
Conference title
29th European Symposium on Artificial Neutral Networks, Computational Intelligence and Machine Learning
Conference date
2021-10
Conference city
OnLine
Book title
ESANN 2021 - European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
Publisher
i6doc.com
ISBN
978287587082-7
Pages
263-268
Publication identifier
10.14428/esann/2021.ES2021-115
Metadata
Show full item record
Author(s)
Barbaro, Florian
Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) [SAMM]
Rossi, Fabrice
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
Mixtures of von Mises-Fisher distributions can be used to cluster data on the unit hypersphere. This is particularly adapted for high-dimensional directional data such as texts. We propose in this article to estimate a von Mises mixture using a l1 penalized likelihood. This leads to sparse prototypes that improve both clustering quality and interpretability. We introduce an expectation-maximisation (EM) algorithm for this estimation and show the advantages of the approach on real data benchmark. We propose to explore the trade-off between the sparsity term and the likelihood one with a simple path following algorithm.

Related items

Showing items related by title and author.

  • Thumbnail
    Pénalisation l 1 pour un mélange de lois de von Mises-Fisher 
    Barbaro, Florian; Rossi, Fabrice (2021) Communication / Conférence
  • Thumbnail
    Bayesian Goodness-of-Fit Testing with Mixtures of Triangular Distributions 
    Mengersen, Kerrie; Rousseau, Judith; McVinish, Ross (2009) Article accepté pour publication ou publié
  • Thumbnail
    Bayesian Mixtures of Triangular distributions with application to Goodness-of-Fit Testing 
    Rousseau, Judith; Mengersen, Kerrie; McVinish, Ross (2005) Document de travail / Working paper
  • Thumbnail
    Bernstein–von Mises theorem for linear functionals of the density 
    Rivoirard, Vincent; Rousseau, Judith (2012) Article accepté pour publication ou publié
  • Thumbnail
    Adding semantic to level-up graph-based Android malware detection 
    Cohen, Roxane; Yger, Florian; Rossi, Fabrice (2021) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo