• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

L1-Gradient Flow of Convex Functionals

Chambolle, Antonin; Novaga, Matteo (2022), L1-Gradient Flow of Convex Functionals. https://basepub.dauphine.psl.eu/handle/123456789/23084

View/Open
GFL7.pdf (365.5Kb)
Type
Document de travail / Working paper
Date
2022
Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSL
Published in
Paris
Pages
24
Metadata
Show full item record
Author(s)
Chambolle, Antonin cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Novaga, Matteo
Dipartimento di Matematica [Pisa]
Abstract (EN)
We are interested in the gradient flow of a general first order convex functional with respect to the L¹-topology. By means of an implicit minimization scheme, we show existence of a global limit solution, which satisfies an energy-dissipation estimate, and solves a non-linear and non-local gradient flow equation, under the assumption of strong convexity of the energy. Under a monotonicity assumption we can also prove uniqueness of the limit solution, even though this remains an open question in full generality. We also consider a geometric evolution corresponding to the L¹-gradient flow of the anisotropic perimeter. When the initial set is convex, we show that the limit solution is monotone for the inclusion, convex and unique until it reaches the Cheeger set of the initial datum. Eventually, we show with some examples that uniqueness cannot be expected in general in the geometric case.

Related items

Showing items related by title and author.

  • Thumbnail
    Anisotropic and crystalline mean curvature flow of mean-convex sets 
    Chambolle, Antonin; Novaga, Matteo (2022) Article accepté pour publication ou publié
  • Thumbnail
    Convex Representation for Lower Semicontinuous Envelopes of Functionals in L1 
    Chambolle, Antonin (2001) Article accepté pour publication ou publié
  • Thumbnail
    Evolution of characteristic functions of convex sets in the plane by the minimizing total variation flow 
    Alter, François; Caselles, Vincent; Chambolle, Antonin (2005) Article accepté pour publication ou publié
  • Thumbnail
    An Extension Result for Generalised Special Functions of Bounded Deformation 
    Cagnetti, Filippo; Chambolle, Antonin; Perugini, Matteo; Scardia, Lucia (2020) Article accepté pour publication ou publié
  • Thumbnail
    Total Variation Denoising and Support Localization of the Gradient 
    Chambolle, Antonin; Duval, Vincent; Peyré, Gabriel; Poon, Clarice (2016) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo