• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

A note on the rearrangement of functions in time and on the parabolic Talenti inequality

Mazari, Idriss (2022), A note on the rearrangement of functions in time and on the parabolic Talenti inequality, Annali Dell'Universita' Di Ferrara. 10.1007/s11565-022-00392-y

View/Open
M-2022-Talenti-R1.pdf (413.9Kb)
Type
Article accepté pour publication ou publié
Date
2022
Journal name
Annali Dell'Universita' Di Ferrara
Publisher
Springer
Publication identifier
10.1007/s11565-022-00392-y
Metadata
Show full item record
Author(s)
Mazari, Idriss
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
Talenti inequalities are a central feature in the qualitative analysis of PDE constrained optimal control as well as in calculus of variations. The classical parabolic Talenti inequality states that if we consider the parabolic equation ∂u ∂t − ∆u = f = f (t, x) then, replacing, for any time t, f (t, •) with its Schwarz rearrangement f # (t, •) increases the concentration of the solution in the following sense: letting v be the solution of ∂v ∂t − ∆v = f # in the ball, then the solution u is less concentrated than v. This property can be rephrased in terms of the existence of a maximal element for a certain order relationship. It is natural to try and rearrange the source term not only in space but also in time, and thus to investigate the existence of such a maximal element when we rearrange the function with respect to the two variables. In the present paper we prove that this is not possible.
Subjects / Keywords
Optimisation; Optimal control of PDEs; Rearrangement of functions; Talenti inequality

Related items

Showing items related by title and author.

  • Thumbnail
    Optimisation of the total population size with respect to the initial condition for semilinear parabolic equations: Two-scale expansions and symmetrisations. 
    Mazari, Idriss; Nadin, Grégoire; Toledo Marrero, Ana (2021) Article accepté pour publication ou publié
  • Thumbnail
    Generalized principal eigenvalues of space-time periodic, weakly coupled, cooperative, parabolic systems 
    Girardin, Léo; Mazari, Idriss (2021) Document de travail / Working paper
  • Thumbnail
    Localising optimality conditions for the linear optimal control of semilinear equations \emph{via} concentration results for oscillating solutions of linear parabolic equations 
    Mazari, Idriss; Nadin, Grégoire (2022) Document de travail / Working paper
  • Thumbnail
    The bang-bang property in some parabolic bilinear optimal control problems via two-scale asymptotic expansions 
    Mazari, Idriss (2022) Document de travail / Working paper
  • Thumbnail
    Optimisation of the total population size for logistic diffusive equations: bang-bang property and fragmentation rate. 
    Mazari, Idriss; Nadin, G.; Privat, Y. (2022) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo