Show simple item record

hal.structure.identifierLaboratoire de Probabilités, Statistique et Modélisation [LPSM (UMR_8001)]
dc.contributor.authorLupu, Titus
HAL ID: 18567
hal.structure.identifierInstitut Camille Jordan [Villeurbanne] [ICJ]
dc.contributor.authorSabot, Christophe
HAL ID: 16397
hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorTarrès, Pierre
dc.date.accessioned2022-03-11T11:13:45Z
dc.date.available2022-03-11T11:13:45Z
dc.date.issued2019
dc.identifier.issn1083-6489
dc.identifier.urihttps://basepub.dauphine.psl.eu/handle/123456789/22859
dc.language.isoenen
dc.subjectGaussian free fielden
dc.subjectIsing modelen
dc.subjectloop-soupsen
dc.subjectrandom currentsen
dc.subjectRay-Knight identityen
dc.subjectself-interacting processesen
dc.subject.ddc519en
dc.titleInverting the coupling of the signed Gaussian free field with a loop-soupen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenLupu introduced a coupling between a random walk loop-soup and a Gaussian free field, where the sign of the field is constant on each cluster of loops. This coupling is a signed version of isomorphism theorems relating the square of the GFF to the occupation field of Markovian trajectories. His construction starts with a loop-soup, and by adding additional randomness samples a GFF out of it. In this article we provide the inverse construction: starting from a signed free field and using a self-interacting random walk related to this field, we construct a random walk loop-soup. Our construction relies on the previous work by Sabot and Tarrès, which inverts the coupling from the square of the GFF rather than the signed GFF itself.en
dc.relation.isversionofjnlnameElectronic Journal of Probability
dc.relation.isversionofjnlvol24en
dc.relation.isversionofjnldate2019-06
dc.relation.isversionofjnlpages1-28en
dc.relation.isversionofdoi10.1214/19-EJP326en
dc.relation.isversionofjnlpublisherInstitute of Mathematical Statisticsen
dc.subject.ddclabelProbabilités et mathématiques appliquéesen
dc.relation.forthcomingnonen
dc.description.ssrncandidatenon
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewedouien
dc.date.updated2022-03-11T11:09:44Z
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record