• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Sparse k-means for mixed data via group-sparse clustering

Chavent, Marie; Lacaille, Jerome; Mourer, Alex; Olteanu, Madalina (2020), Sparse k-means for mixed data via group-sparse clustering, ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, i6doc.com

View/Open
ES2020-103.pdf (1.572Mb)
Type
Communication / Conférence
External document link
https://hal.archives-ouvertes.fr/hal-03130672
Date
2020
Conference title
ESANN 2020 - 28th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
Conference date
2020-10
Conference city
Bruges (virtuel)
Conference country
Belgium
Book title
ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
Publisher
i6doc.com
ISBN
978-2-87587-074-2
Metadata
Show full item record
Author(s)
Chavent, Marie cc
Institut de Mathématiques de Bordeaux [IMB]
Lacaille, Jerome
Safran Aircraft Engines
Mourer, Alex
SAMM - Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) [SAMM]
Olteanu, Madalina
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
The present manuscript tackles the issue of variable selection for clustering, in high dimensional data described both by numerical and categorical features. First, we build upon the sparse k-means algorithm with lasso penalty, and introduce the group-L1 penalty-already known in regression-in the unsupervised context. Second, we preprocess mixed data and transform categorical features into groups of dummy variables with appropriate scaling, on which one may then apply the group-sparse clustering procedure. The proposed method performs simultaneously clustering and feature selection, and provides meaningful partitions and meaningful features, numerical and categorical, for describing them.
Subjects / Keywords
Clustering; Kmeans algorithm; Variables selection; Sparse Models; Lasso penalty; Group lasso; Interpretability; Explainability; Weighted Kmeans

Related items

Showing items related by title and author.

  • Thumbnail
    Handling Correlations in Random Forests: which Impacts on Variable Importance and Model Interpretability? 
    Chavent, Marie; Lacaille, Jerome; Mourer, Alex; Olteanu, Madalina (2021) Communication / Conférence
  • Thumbnail
    Extension of Partitional Clustering Methods for Handling Mixed Data 
    Naija, Yosr; Chakhar, Salem; Blibech, Kaouther; Robbana, Riadh (2008) Communication / Conférence
  • Thumbnail
    Editorial of Special Issue on WSOM+ 2017 
    Lamirel, Jean-Charles; Cottrell, Marie; Olteanu, Madalina; Lévy, Bruno (2020) Article accepté pour publication ou publié
  • Thumbnail
    Special Issue on WSOM+ 2017 
    Lamirel, Jean-Charles; Cottrell, Marie; Olteanu, Madalina; Lévy, Bruno (2020) Article accepté pour publication ou publié
  • Thumbnail
    Sparse Non-Negative Stencils for Anisotropic Diffusion 
    Mirebeau, Jean-Marie; Fehrenbach, Jérôme (2014) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo