Generalized principal eigenvalues of space-time periodic, weakly coupled, cooperative, parabolic systems
hal.structure.identifier | Institut Camille Jordan [ICJ] | |
dc.contributor.author | Girardin, Léo
HAL ID: 20905 ORCID: 0000-0001-8201-2053 | |
hal.structure.identifier | CEntre de REcherches en MAthématiques de la DEcision [CEREMADE] | |
dc.contributor.author | Mazari, Idriss
HAL ID: 751069 | |
dc.date.accessioned | 2022-03-02T14:10:20Z | |
dc.date.available | 2022-03-02T14:10:20Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | https://basepub.dauphine.psl.eu/handle/123456789/22853 | |
dc.language.iso | en | en |
dc.subject | principal eigenvalues | en |
dc.subject | space-time periodicity | en |
dc.subject | cooperative systems | en |
dc.subject.ddc | 519 | en |
dc.title | Generalized principal eigenvalues of space-time periodic, weakly coupled, cooperative, parabolic systems | en |
dc.type | Document de travail / Working paper | |
dc.description.abstracten | This paper is concerned with generalizations of the notion of principal eigenvalue in the context of space-time periodic cooperative systems. When the spatial domain is the whole space, the Krein-Rutman theorem cannot be applied and this leads to more sophisticated constructions and to the notion of generalized principal eigenvalues. These are not unique in general and we focus on a one-parameter family corresponding to principal eigenfunctions that are space-time periodic multiplicative perturbations of exponentials of the space variable. Besides existence and uniqueness properties of such principal eigenpairs, we also prove various dependence and optimization results illustrating how known results in the scalar setting can, or cannot, be extended to the vector setting. We especially prove an optimization property on minimizers and maximizers among mutation operators valued in the set of bistochastic matrices that is, to the best of our knowledge, new. | en |
dc.publisher.city | Paris | en |
dc.identifier.citationpages | 77 | en |
dc.relation.ispartofseriestitle | Cahier de recherche CEREMADE, Université Paris Dauphine-PSL | en |
dc.identifier.urlsite | https://hal.archives-ouvertes.fr/hal-03349049 | en |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
dc.identifier.citationdate | 2021 | |
dc.description.ssrncandidate | non | |
dc.description.halcandidate | non | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.date.updated | 2022-03-02T14:08:21Z | |
hal.author.function | aut | |
hal.author.function | aut |