• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Generalized principal eigenvalues of space-time periodic, weakly coupled, cooperative, parabolic systems

Girardin, Léo; Mazari, Idriss (2021), Generalized principal eigenvalues of space-time periodic, weakly coupled, cooperative, parabolic systems. https://basepub.dauphine.psl.eu/handle/123456789/22853

View/Open
main_(3).pdf (931.4Kb)
Type
Document de travail / Working paper
External document link
https://hal.archives-ouvertes.fr/hal-03349049
Date
2021
Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSL
Published in
Paris
Pages
77
Metadata
Show full item record
Author(s)
Girardin, Léo cc
Institut Camille Jordan [ICJ]
Mazari, Idriss
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
This paper is concerned with generalizations of the notion of principal eigenvalue in the context of space-time periodic cooperative systems. When the spatial domain is the whole space, the Krein-Rutman theorem cannot be applied and this leads to more sophisticated constructions and to the notion of generalized principal eigenvalues. These are not unique in general and we focus on a one-parameter family corresponding to principal eigenfunctions that are space-time periodic multiplicative perturbations of exponentials of the space variable. Besides existence and uniqueness properties of such principal eigenpairs, we also prove various dependence and optimization results illustrating how known results in the scalar setting can, or cannot, be extended to the vector setting. We especially prove an optimization property on minimizers and maximizers among mutation operators valued in the set of bistochastic matrices that is, to the best of our knowledge, new.
Subjects / Keywords
principal eigenvalues; space-time periodicity; cooperative systems

Related items

Showing items related by title and author.

  • Thumbnail
    A note on the rearrangement of functions in time and on the parabolic Talenti inequality 
    Mazari, Idriss (2022) Article accepté pour publication ou publié
  • Thumbnail
    Shape optimization of a weighted two-phase Dirichlet eigenvalue 
    Mazari, Idriss; Nadin, Grégoire; Privat, Yannick (2022) Article accepté pour publication ou publié
  • Thumbnail
    Quantitative Stability for Eigenvalues of Schrödinger Operator, Quantitative Bathtub Principle, and Application to the Turnpike Property for a Bilinear Optimal Control Problem 
    Mazari, Idriss; Ruiz-Balet, Domènec (2022) Article accepté pour publication ou publié
  • Thumbnail
    Localising optimality conditions for the linear optimal control of semilinear equations \emph{via} concentration results for oscillating solutions of linear parabolic equations 
    Mazari, Idriss; Nadin, Grégoire (2022) Document de travail / Working paper
  • Thumbnail
    Optimisation of the total population size with respect to the initial condition for semilinear parabolic equations: Two-scale expansions and symmetrisations. 
    Mazari, Idriss; Nadin, Grégoire; Toledo Marrero, Ana (2021) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo