
Generalized principal eigenvalues of space-time periodic, weakly coupled, cooperative, parabolic systems
Girardin, Léo; Mazari, Idriss (2021), Generalized principal eigenvalues of space-time periodic, weakly coupled, cooperative, parabolic systems. https://basepub.dauphine.psl.eu/handle/123456789/22853
View/ Open
Type
Document de travail / Working paperExternal document link
https://hal.archives-ouvertes.fr/hal-03349049Date
2021Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSLPublished in
Paris
Pages
77
Metadata
Show full item recordAuthor(s)
Girardin, Léo
Institut Camille Jordan [ICJ]
Mazari, Idriss
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
This paper is concerned with generalizations of the notion of principal eigenvalue in the context of space-time periodic cooperative systems. When the spatial domain is the whole space, the Krein-Rutman theorem cannot be applied and this leads to more sophisticated constructions and to the notion of generalized principal eigenvalues. These are not unique in general and we focus on a one-parameter family corresponding to principal eigenfunctions that are space-time periodic multiplicative perturbations of exponentials of the space variable. Besides existence and uniqueness properties of such principal eigenpairs, we also prove various dependence and optimization results illustrating how known results in the scalar setting can, or cannot, be extended to the vector setting. We especially prove an optimization property on minimizers and maximizers among mutation operators valued in the set of bistochastic matrices that is, to the best of our knowledge, new.Subjects / Keywords
principal eigenvalues; space-time periodicity; cooperative systemsRelated items
Showing items related by title and author.
-
Mazari, Idriss (2022) Article accepté pour publication ou publié
-
Mazari, Idriss; Nadin, Grégoire; Privat, Yannick (2022) Article accepté pour publication ou publié
-
Mazari, Idriss; Ruiz-Balet, Domènec (2022) Article accepté pour publication ou publié
-
Mazari, Idriss; Nadin, Grégoire (2022) Document de travail / Working paper
-
Mazari, Idriss; Nadin, Grégoire; Toledo Marrero, Ana (2021) Article accepté pour publication ou publié