• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Towards a Better Understanding of Genetic operators for Ordering Optimization -Application to the Capacitated Vehicle Routing Problem

Ben Hamida, Sana; Gorsane, R.; Mestiri, K. (2020), Towards a Better Understanding of Genetic operators for Ordering Optimization -Application to the Capacitated Vehicle Routing Problem, 15th International Conference on Software Technologies, 2020-07

View/Open
VRP_ICSOFT2020_final_paper48.pdf (446.4Kb)
Type
Communication / Conférence
Date
2020
Conference title
15th International Conference on Software Technologies
Conference date
2020-07
Book author
van Sinderen, Marten; Fill, Hans-Georg; Maciaszek, Leszek
Publisher
SciTe Press
ISBN
978-989-758-443-5
Pages
461-469
Publication identifier
10.5220/0009832704610469
Metadata
Show full item record
Author(s)
Ben Hamida, Sana
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Gorsane, R.
InstaDeep
Mestiri, K.
InstaDeep
Abstract (EN)
Genetic Algorithms (GA) have long been used for ordering optimization problems with some considerable efforts to improve their exploration and exploitation abilities. A great number of GA implementations have been proposed varying from GAs applying simple or advanced variation operators to hybrid GAs combined with different heuristics. In this work, we propose a short review of genetic operators for ordering optimization with a classification according to the information used in the reproduction step. Crossover operators could be position (”blind”) operators or heuristic operators. Mutation operators could be applied randomly or using local optimization. After studying the contribution of each class on solving two benchmark instances of the Capacitated Vehicle Routing Problem (CVRP), we explain how to combine the variation operators to allow simultaneously a better exploration of the search space with higher exploitation. We then propose the random and the balanced hybridization of t he operators’ classes. The hybridization strategies are applied to solve 24 CVRP benchmark instances. Results are analyzed and compared to demonstrate the role of each class of operators in the evolution process.
Subjects / Keywords
Genetic Algorithms; Ordering Optimization; CVRP; Hybridization; Exploitation/exploration

Related items

Showing items related by title and author.

  • Thumbnail
    Scale Genetic Programming for large Data Sets: Case of Higgs Bosons Classification 
    Hmida, Hmida; Ben Hamida, Sana; Borgi, Amel; Rukoz, Marta (2018) Article accepté pour publication ou publié
  • Thumbnail
    Genetic Algorithm to Detect Different Sizes’ Communities from Protein-Protein Interaction Networks 
    Ben M'barek, Marwa; Borgi, Amel; Ben Hamida, Sana; Rukoz, Marta (2019) Communication / Conférence
  • Thumbnail
    A new adaptive sampling approach for Genetic Programming 
    Hmida, Hmida; Ben Hamida, Sana; Borgi, Amel; Rukoz, Marta (2019) Communication / Conférence
  • Thumbnail
    Genetic Programming over Spark for Higgs Boson Classification 
    Hmida, Hmida; Ben Hamida, Sana; Borgi, Amel; Rukoz, Marta (2019) Communication / Conférence
  • Thumbnail
    Nested Monte Carlo Expression Discovery vs Genetic Programming for Forecasting Financial Volatility 
    Ben Hamida, Sana; Cazenave, Tristan (2020) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo