• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

The Maximum Duo-Preservation String Mapping Problem with Bounded Alphabet

Boria, Nicolas; Gourvès, Laurent; Paschos, Vangelis; Monnot, Jérôme (2021), The Maximum Duo-Preservation String Mapping Problem with Bounded Alphabet, 21st International Workshop on Algorithms in Bioinformatics (WABI 2021), 2021-08

View/Open
LIPIcs-WABI-2021-5.pdf (782.1Kb)
Type
Communication / Conférence
Date
2021
Conference title
21st International Workshop on Algorithms in Bioinformatics (WABI 2021)
Conference date
2021-08
Book author
Carbone, Alessandra; El-Kebir, Mohammed
Publisher
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
ISBN
978-3-95977-200-6
Pages
5:1--5:12
Publication identifier
10.4230/LIPIcs.WABI.2021.5
Metadata
Show full item record
Author(s)
Boria, Nicolas
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Gourvès, Laurent
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Paschos, Vangelis
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Monnot, Jérôme
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
Given two strings A and B such that B is a permutation of A, the max duo-preservation string mapping (MPSM) problem asks to find a mapping π between them so as to preserve a maximum number of duos. A duo is any pair of consecutive characters in a string and it is preserved by π if its two consecutive characters in A are mapped to same two consecutive characters in B. This problem has received a growing attention in recent years, partly as an alternative way to produce approximation algorithms for its minimization counterpart, min common string partition, a widely studied problem due its applications in comparative genomics. Considering this favored field of application with short alphabet, it is surprising that MPSM ℓ , the variant of MPSM with bounded alphabet, has received so little attention, with a single yet impressive work that provides a 2.67-approximation achieved in O(n) [5], where n = |A| = |B|. Our work focuses on MPSM ℓ , and our main contribution is the demonstration that this problem admits a Polynomial Time Approximation Scheme (PTAS) when ℓ = O(1). We also provide an alternate, somewhat simpler, proof of NP-hardness for this problem compared with the NP-hardness proof presented in [16].
Subjects / Keywords
Maximum-Duo Preservation String Mapping; Bounded alphabet; PolynomialTime Approximation Scheme

Related items

Showing items related by title and author.

  • Thumbnail
    Reoptimization of the Maximum Weighted Pk-Free Subgraph Problem under Vertex Insertion 
    Boria, Nicolas; Monnot, Jérôme; Paschos, Vangelis (2012) Communication / Conférence
  • Thumbnail
    Reoptimization of maximum weight induced hereditary subgraph problems 
    Boria, Nicolas; Paschos, Vangelis; Monnot, Jérôme (2013) Article accepté pour publication ou publié
  • Thumbnail
    On the performance of congestion games for optimum satisfiability problems 
    Monnot, Jérôme; Giannakos, A.; Gourvès, Laurent; Paschos, Vangelis (2007) Communication / Conférence
  • Thumbnail
    On the performance of congestion games for optimum satisfiability problems 
    Giannakos, Aristotelis; Gourvès, Laurent; Monnot, Jérôme; Paschos, Vangelis (2007) Document de travail / Working paper
  • Thumbnail
    Reoptimization under Vertex Insertion: Max Pk-Free Subgraph and Max Planar Subgraph 
    Boria, Nicolas; Monnot, Jérôme; Paschos, Vangelis (2013) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo