• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

(In)approximability of maximum minimal FVS

Dublois, Louis; Hanaka, Tesshu; Khosravian Ghadikolaei, Mehdi; Lampis, Michael; Melissinos, Nikolaos (2020), (In)approximability of maximum minimal FVS, Journal of Computer and System Sciences, 124, p. 26-40. 10.1016/j.jcss.2021.09.001

View/Open
2009.09971.pdf (1.735Mb)
Type
Article accepté pour publication ou publié
Date
2020
Journal name
Journal of Computer and System Sciences
Volume
124
Publisher
Elsevier
Pages
26-40
Publication identifier
10.1016/j.jcss.2021.09.001
Metadata
Show full item record
Author(s)
Dublois, Louis
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Hanaka, Tesshu
Khosravian Ghadikolaei, Mehdi
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Lampis, Michael
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Melissinos, Nikolaos
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
We study the approximability of the NP-complete Maximum Minimal Feedback Vertex Set problem. Informally, this natural problem seems to lie in an intermediate space between two more well-studied problems of this type: Maximum Minimal Vertex Cover, for which the best achievable approximation ratio is , and Upper Dominating Set, which does not admit any n1− approximation. We confirm and quantify this intuition by showing the first non-trivial polynomial time approximation for Maximum Minimal Feedback Vertex Set with a ratio of O(n2/3), as well as a matching hardness of approximation bound of n2/3−, improving the previously known hardness of n1/2−. Having settled the problem's approximability in polynomial time, we move to the context of super-polynomial time. We devise a generalization of our approximation algorithm which, for any desired approximation ratio r, produces an r-approximate solution in time nO(n/r3/2). This time-approximation trade-off is essentially tight under the ETH.
Subjects / Keywords
Approximation algorithms; ETH; Inapproximability

Related items

Showing items related by title and author.

  • Thumbnail
    On the Complexity of the Upper r-Tolerant Edge Cover Problem 
    Harutyunyan, Ararat; Khosravian Ghadikolaei, Mehdi; Melissinos, Nikolaos; Monnot, Jérôme; Pagourtzis, Aris (2020) Communication / Conférence
  • Thumbnail
    Extension and its price for the connected vertex cover problem 
    Khosravian Ghadikolaei, Mehdi; Melissinos, Nikolaos; Monnot, Jérôme; Pagourtzis, Aris (2019) Communication / Conférence
  • Thumbnail
    Complexity and approximability of extended Spanning Star Forest problems in general and complete graphs 
    Khoshkhah, Kaveh; Khosravian Ghadikolaei, Mehdi; Monnot, Jérôme; Theis, Dirk Oliver (2019) Article accepté pour publication ou publié
  • Thumbnail
    How Bad is the Freedom to Flood-It? 
    Belmonte, Rémy; Khosravian Ghadikolaei, Mehdi; Kiyomi, Masashi; Lampis, Michael; Otachi, Yota (2019) Article accepté pour publication ou publié
  • Thumbnail
    Parameterized Complexity of Safe Set 
    Belmonte, Rémy; Hanaka, Tesshu; Katsikarelis, Ioannis; Lampis, Michael; Ono, Hirotaka; Otachi, Yota (2019) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo