
Minimax estimation of Functional Principal Components from noisy discretized functional data
Belhakem, Mohammed Ryad; Picard, Franck; Rivoirard, Vincent; Roche, Angelina (2021), Minimax estimation of Functional Principal Components from noisy discretized functional data. https://basepub.dauphine.psl.eu/handle/123456789/22799
View/ Open
Type
Document de travail / Working paperExternal document link
https://hal.archives-ouvertes.fr/hal-03395522Date
2021Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSLPublished in
Paris
Pages
35
Metadata
Show full item recordAuthor(s)
Belhakem, Mohammed RyadCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Picard, Franck
Laboratoire de biologie et modélisation de la cellule [LBMC UMR 5239]
Rivoirard, Vincent
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Roche, Angelina
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
Functional Principal Component Analysis is a reference method for dimension reduction of curve data. Its theoretical properties are now well understood in the simplified case where the sample curves are fully observed without noise. However, functional data are noisy and necessarily observed on a finite discretization grid. Common practice consists in smoothing the data and then to compute the functional estimates, but the impact of this denoising step on the procedure’s statistical performance are rarely considered. Here we prove new convergence rates for functional principal component estimators. We introduce a double asymptotic framework: one corresponding to the sampling size and a second to the size of the grid. We prove that estimates based on projection onto histograms show optimal rates in a minimax sense. Theoretical results are illustrated on simulated data and the method is applied to the visualization of genomic data.Subjects / Keywords
Functional data analysis; Principal Components Analysis; minimax ratesRelated items
Showing items related by title and author.
-
Roche, Angelina (2022) Document de travail / Working paper
-
Belhakem, Ryad Mohammed (2022-06-10) Thèse
-
Chagny, Gaëlle; Channarond, Antoine; Hoang, Van Ha; Roche, Angelina (2022) Article accepté pour publication ou publié
-
Chagny, Gaëlle; Meynaoui, Anouar; Roche, Angelina (2022) Document de travail / Working paper
-
Tuleau-Malot, Christine; Grammont, Franck; Rivoirard, Vincent; Reynaud-Bouret, Patricia (2014) Article accepté pour publication ou publié