• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Minimax estimation of Functional Principal Components from noisy discretized functional data

Belhakem, Mohammed Ryad; Picard, Franck; Rivoirard, Vincent; Roche, Angelina (2021), Minimax estimation of Functional Principal Components from noisy discretized functional data. https://basepub.dauphine.psl.eu/handle/123456789/22799

View/Open
2110.12739.pdf (371.0Kb)
Type
Document de travail / Working paper
External document link
https://hal.archives-ouvertes.fr/hal-03395522
Date
2021
Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSL
Published in
Paris
Pages
35
Metadata
Show full item record
Author(s)
Belhakem, Mohammed Ryad
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Picard, Franck
Laboratoire de biologie et modélisation de la cellule [LBMC UMR 5239]
Rivoirard, Vincent
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Roche, Angelina
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
Functional Principal Component Analysis is a reference method for dimension reduction of curve data. Its theoretical properties are now well understood in the simplified case where the sample curves are fully observed without noise. However, functional data are noisy and necessarily observed on a finite discretization grid. Common practice consists in smoothing the data and then to compute the functional estimates, but the impact of this denoising step on the procedure’s statistical performance are rarely considered. Here we prove new convergence rates for functional principal component estimators. We introduce a double asymptotic framework: one corresponding to the sampling size and a second to the size of the grid. We prove that estimates based on projection onto histograms show optimal rates in a minimax sense. Theoretical results are illustrated on simulated data and the method is applied to the visualization of genomic data.
Subjects / Keywords
Functional data analysis; Principal Components Analysis; minimax rates

Related items

Showing items related by title and author.

  • Thumbnail
    New perspectives in smoothing : minimax estimation of the mean and principal components ofdiscretized functional data. 
    Roche, Angelina (2022) Document de travail / Working paper
  • Thumbnail
    Étude statistique de l’analyse en composantes principales fonctionnelle dans les cadres uni et multivarié 
    Belhakem, Ryad Mohammed (2022-06-10) Thèse
  • Thumbnail
    Adaptive nonparametric estimation of a component density in a two-class mixture model 
    Chagny, Gaëlle; Channarond, Antoine; Hoang, Van Ha; Roche, Angelina (2022) Article accepté pour publication ou publié
  • Thumbnail
    Adaptive nonparametric estimation in the functional linear model with functional output 
    Chagny, Gaëlle; Meynaoui, Anouar; Roche, Angelina (2022) Document de travail / Working paper
  • Thumbnail
    Goodness-of-fit tests and nonparametric adaptive estimation for spike train analysis 
    Tuleau-Malot, Christine; Grammont, Franck; Rivoirard, Vincent; Reynaud-Bouret, Patricia (2014) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo