• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

The delocalized phase of the Anderson Hamiltonian in 1-d

Dumaz, Laure; Labbé, Cyril (2021), The delocalized phase of the Anderson Hamiltonian in 1-d. https://basepub.dauphine.psl.eu/handle/123456789/22794

View/Open
2102.05393.pdf (343.9Kb)
Type
Document de travail / Working paper
External document link
https://hal.archives-ouvertes.fr/hal-03370032
Date
2021
Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSL
Published in
Paris
Pages
31
Metadata
Show full item record
Author(s)
Dumaz, Laure
Département de Mathématiques et Applications - ENS Paris [DMA]
Labbé, Cyril
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We introduce a random differential operator, that we call the CSτ operator, whose spectrum is given by the Schτ point process introduced by Kritchevski, Valk\'o and Vir\'ag (2012) and whose eigenvectors match with the description provided by Rifkind and Vir\'ag (2018). This operator acts on R2-valued functions from the interval [0,1] and takes the form:2(0∂t−∂t0)+τ−−√⎛⎝dB+12√dW112√dW212√dW2dB−12√dW1⎞⎠,where dB, dW1 and dW2 are independent white noises. Then, we investigate the high part of the spectrum of the Anderson Hamiltonian HL:=−∂2t+dB on the segment [0,L] with white noise potential dB, when L→∞. We show that the operator HL, recentred around energy levels E∼L/τ and unitarily transformed, converges in law as L→∞ to CSτ in an appropriate sense. This allows to answer a conjecture of Rifkind and Vir\'ag (2018) on the behavior of the eigenvectors of HL. Our approach also explains how such an operator arises in the limit of HL. Finally we show that at higher energy levels, the Anderson Hamiltonian matches (asymptotically in L) with the unperturbed Laplacian −∂2t. In a companion paper, it is shown that at energy levels much smaller than L, the spectrum is localized with Poisson statistics: the present paper therefore identifies the delocalized phase of the Anderson Hamiltonian.
Subjects / Keywords
Anderson Hamiltonian; Hill’s operator; Canonical systems; Dirac operator; Delocalization; Strong resolvent convergence; Diffusion; Sch

Related items

Showing items related by title and author.

  • Thumbnail
    Localization of the continuous Anderson Hamiltonian in 1-D 
    Dumaz, Laure; Labbé, Cyril (2019) Article accepté pour publication ou publié
  • Thumbnail
    Localization crossover for the continuous Anderson Hamiltonian in 1-d 
    Dumaz, Laure; Labbé, Cyril (2021) Document de travail / Working paper
  • Thumbnail
    Asymptotic of the smallest eigenvalues of the continuous Anderson Hamiltonian in d≤3 
    Hsu, Yueh-Sheng; Labbé, Cyril (2022) Article accepté pour publication ou publié
  • Thumbnail
    The continuous Anderson hamiltonian in d≤3 
    Labbé, Cyril (2019) Article accepté pour publication ou publié
  • Thumbnail
    The stochastic Airy operator at large temperature 
    Dumaz, Laure; Labbé, Cyril (2022) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo