
Asymptotic of the smallest eigenvalues of the continuous Anderson Hamiltonian in d≤3
Hsu, Yueh-Sheng; Labbé, Cyril (2022), Asymptotic of the smallest eigenvalues of the continuous Anderson Hamiltonian in d≤3, Stochastics and Partial Differential Equations: Analysis and Computations, p. 26. 10.1007/s40072-022-00252-y
View/ Open
Type
Article accepté pour publication ou publiéDate
2022Journal name
Stochastics and Partial Differential Equations: Analysis and ComputationsPublisher
Springer
Published in
Paris
Pages
26
Publication identifier
Metadata
Show full item recordAuthor(s)
Hsu, Yueh-ShengCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Labbé, Cyril
Laboratoire de Probabilités, Statistique et Modélisation [LPSM (UMR_8001)]
Abstract (EN)
We consider the continuous Anderson Hamiltonian with white noise potential on (−L/2,L/2)d in dimension d≤3, and derive the asymptotic of the smallest eigenvalues when L goes to infinity. We show that these eigenvalues go to −∞ at speed (logL)1/(2−d/2) and identify the prefactor in terms of the optimal constant of the Gagliardo-Nirenberg inequality. This result was already known in dimensions 1 and 2, but appears to be new in dimension 3. We present some conjectures on the fluctuations of the eigenvalues and on the asymptotic shape of the corresponding eigenfunctions near their localisation centers.Subjects / Keywords
Anderson Hamiltonian; regularity structures; white noise; Schrödinger operator; GagliardoNirenberg inequalityRelated items
Showing items related by title and author.
-
Dumaz, Laure; Labbé, Cyril (2019) Article accepté pour publication ou publié
-
Labbé, Cyril (2019) Article accepté pour publication ou publié
-
Dumaz, Laure; Labbé, Cyril (2021) Document de travail / Working paper
-
Dumaz, Laure; Labbé, Cyril (2021) Document de travail / Working paper
-
Labbé, Cyril (2014) Article accepté pour publication ou publié