• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Asymptotic of the smallest eigenvalues of the continuous Anderson Hamiltonian in d≤3

Hsu, Yueh-Sheng; Labbé, Cyril (2022), Asymptotic of the smallest eigenvalues of the continuous Anderson Hamiltonian in d≤3, Stochastics and Partial Differential Equations: Analysis and Computations, p. 26. 10.1007/s40072-022-00252-y

View/Open
2108.12230.pdf (301.3Kb)
Type
Article accepté pour publication ou publié
Date
2022
Journal name
Stochastics and Partial Differential Equations: Analysis and Computations
Publisher
Springer
Published in
Paris
Pages
26
Publication identifier
10.1007/s40072-022-00252-y
Metadata
Show full item record
Author(s)
Hsu, Yueh-Sheng
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Labbé, Cyril
Laboratoire de Probabilités, Statistique et Modélisation [LPSM (UMR_8001)]
Abstract (EN)
We consider the continuous Anderson Hamiltonian with white noise potential on (−L/2,L/2)d in dimension d≤3, and derive the asymptotic of the smallest eigenvalues when L goes to infinity. We show that these eigenvalues go to −∞ at speed (logL)1/(2−d/2) and identify the prefactor in terms of the optimal constant of the Gagliardo-Nirenberg inequality. This result was already known in dimensions 1 and 2, but appears to be new in dimension 3. We present some conjectures on the fluctuations of the eigenvalues and on the asymptotic shape of the corresponding eigenfunctions near their localisation centers.
Subjects / Keywords
Anderson Hamiltonian; regularity structures; white noise; Schrödinger operator; GagliardoNirenberg inequality

Related items

Showing items related by title and author.

  • Thumbnail
    Localization of the continuous Anderson Hamiltonian in 1-D 
    Dumaz, Laure; Labbé, Cyril (2019) Article accepté pour publication ou publié
  • Thumbnail
    The continuous Anderson hamiltonian in d≤3 
    Labbé, Cyril (2019) Article accepté pour publication ou publié
  • Thumbnail
    Localization crossover for the continuous Anderson Hamiltonian in 1-d 
    Dumaz, Laure; Labbé, Cyril (2021) Document de travail / Working paper
  • Thumbnail
    The delocalized phase of the Anderson Hamiltonian in 1-d 
    Dumaz, Laure; Labbé, Cyril (2021) Document de travail / Working paper
  • Thumbnail
    Genealogy of flows of continuous-state branching processes via flows of partitions and the Eve property 
    Labbé, Cyril (2014) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo