Localization crossover for the continuous Anderson Hamiltonian in 1-d
hal.structure.identifier | Département de Mathématiques et Applications - ENS Paris [DMA] | |
dc.contributor.author | Dumaz, Laure
HAL ID: 739617 | |
hal.structure.identifier | CEntre de REcherches en MAthématiques de la DEcision [CEREMADE] | |
dc.contributor.author | Labbé, Cyril
HAL ID: 9675 | |
dc.date.accessioned | 2022-02-28T10:35:26Z | |
dc.date.available | 2022-02-28T10:35:26Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | https://basepub.dauphine.psl.eu/handle/123456789/22792 | |
dc.language.iso | en | en |
dc.subject | Anderson Hamiltonian | en |
dc.subject | Hill’s operator | en |
dc.subject | localization | en |
dc.subject | diffusion | en |
dc.subject | Poisson statistics | en |
dc.subject | hypocoercivity | en |
dc.subject | Malliavin calculus | en |
dc.subject.ddc | 519 | en |
dc.title | Localization crossover for the continuous Anderson Hamiltonian in 1-d | en |
dc.type | Document de travail / Working paper | |
dc.description.abstracten | We investigate the behavior of the spectrum of the continuous Anderson Hamiltonian HL, with white noise potential, on a segment whose size L is sent to infinity. We zoom around energy levels E either of order 1 (Bulk regime) or of order 1≪E≪L (Crossover regime). We show that the point process of (appropriately rescaled) eigenvalues and centers of mass converge to a Poisson point process. We also prove exponential localization of the eigenfunctions at an explicit rate. In addition, we show that the eigenfunctions converge to well-identified limits: in the Crossover regime, these limits are universal. Combined with the results of our companion paper arXiv:2102.05393, this identifies completely the transition between the localized and delocalized phases of the spectrum of HL. The two main technical challenges are the proof of a two-points or Minami estimate, as well as an estimate on the convergence to equilibrium of a hypoelliptic diffusion, the proof of which relies on Malliavin calculus and the theory of hypocoercivity. | en |
dc.publisher.city | Paris | en |
dc.identifier.citationpages | 63 | en |
dc.relation.ispartofseriestitle | Cahier de recherche CEREMADE, Université Paris Dauphine-PSL | en |
dc.identifier.urlsite | https://hal.archives-ouvertes.fr/hal-03436108 | en |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
dc.identifier.citationdate | 2021 | |
dc.description.ssrncandidate | non | |
dc.description.halcandidate | non | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.date.updated | 2022-02-28T10:32:52Z | |
hal.author.function | aut | |
hal.author.function | aut |