• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Localization crossover for the continuous Anderson Hamiltonian in 1-d

Dumaz, Laure; Labbé, Cyril (2021), Localization crossover for the continuous Anderson Hamiltonian in 1-d. https://basepub.dauphine.psl.eu/handle/123456789/22792

View/Open
2102.09316.pdf (616.6Kb)
Type
Document de travail / Working paper
External document link
https://hal.archives-ouvertes.fr/hal-03436108
Date
2021
Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSL
Published in
Paris
Pages
63
Metadata
Show full item record
Author(s)
Dumaz, Laure
Département de Mathématiques et Applications - ENS Paris [DMA]
Labbé, Cyril
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We investigate the behavior of the spectrum of the continuous Anderson Hamiltonian HL, with white noise potential, on a segment whose size L is sent to infinity. We zoom around energy levels E either of order 1 (Bulk regime) or of order 1≪E≪L (Crossover regime). We show that the point process of (appropriately rescaled) eigenvalues and centers of mass converge to a Poisson point process. We also prove exponential localization of the eigenfunctions at an explicit rate. In addition, we show that the eigenfunctions converge to well-identified limits: in the Crossover regime, these limits are universal. Combined with the results of our companion paper arXiv:2102.05393, this identifies completely the transition between the localized and delocalized phases of the spectrum of HL. The two main technical challenges are the proof of a two-points or Minami estimate, as well as an estimate on the convergence to equilibrium of a hypoelliptic diffusion, the proof of which relies on Malliavin calculus and the theory of hypocoercivity.
Subjects / Keywords
Anderson Hamiltonian; Hill’s operator; localization; diffusion; Poisson statistics; hypocoercivity; Malliavin calculus

Related items

Showing items related by title and author.

  • Thumbnail
    Localization of the continuous Anderson Hamiltonian in 1-D 
    Dumaz, Laure; Labbé, Cyril (2019) Article accepté pour publication ou publié
  • Thumbnail
    The delocalized phase of the Anderson Hamiltonian in 1-d 
    Dumaz, Laure; Labbé, Cyril (2021) Document de travail / Working paper
  • Thumbnail
    Asymptotic of the smallest eigenvalues of the continuous Anderson Hamiltonian in d≤3 
    Hsu, Yueh-Sheng; Labbé, Cyril (2022) Document de travail / Working paper
  • Thumbnail
    The continuous Anderson hamiltonian in d≤3 
    Labbé, Cyril (2019) Article accepté pour publication ou publié
  • Thumbnail
    Genealogy of flows of continuous-state branching processes via flows of partitions and the Eve property 
    Labbé, Cyril (2014) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo