
Ensemble learning based on functional connectivity and Riemannian geometry for robust workload estimation
Corsi, Marie-Constance; Chevallier, Sylvain; Barthélemy, Quentin; Hoxha, Isabelle; Yger, Florian, Ensemble learning based on functional connectivity and Riemannian geometry for robust workload estimation, Neuroergonomics conference 2021, 2021-09
View/ Open
Type
Communication / ConférenceConference title
Neuroergonomics conference 2021Conference date
2021-09Metadata
Show full item recordAuthor(s)
Corsi, Marie-ConstanceChevallier, Sylvain
Barthélemy, Quentin
Hoxha, Isabelle
Yger, Florian
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
Context Passive Brain-Computer Interface (pBCI) has recently gained in popularity through its applications, e.g. workload and attention assessment. Nevertheless, one of the main limitations remains the important intra-and inter-subject variability. We propose a robust approach relying on ensemble learning, grounded in functional connectivity and Riemannian geometry to mitigate the high variability of the data with a large and diverse panel of classifiers.Subjects / Keywords
Riemannian geometry; Functional connectivity; Ensemble learningRelated items
Showing items related by title and author.
-
Corsi, Marie-Constance; Yger, Florian; Chevallier, Sylvain; Noûs, Camille (2021) Rapport
-
Corsi, Marie-Constance; Yger, Florian; Chevallier, Sylvain; Noûs, Camille (2021) Communication / Conférence
-
Chevallier, Sylvain; Corsi, Marie-Constance; Yger, Florian; Noûs, Camille (2020) Communication / Conférence
-
Corsi, Marie-Constance; Chevallier, Sylvain; de Vico Fallani, Fabrizio; Yger, Florian (2022) Article accepté pour publication ou publié
-
Chevallier, Sylvain; Kalunga, Emmanuel; Barthélemy, Quentin; Yger, Florian (2018) Chapitre d'ouvrage