hal.structure.identifier | Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE] | |
dc.contributor.author | Bonnet, Edouard | |
hal.structure.identifier | Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE] | |
dc.contributor.author | Kim, Eun Jung | |
dc.contributor.author | Reinald, Amadeus | |
dc.contributor.author | Thomassé, Stéphan | |
dc.contributor.author | Watrigant, Rémi | |
dc.date.accessioned | 2022-02-28T09:25:56Z | |
dc.date.available | 2022-02-28T09:25:56Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | https://basepub.dauphine.psl.eu/handle/123456789/22786 | |
dc.language.iso | en | en |
dc.subject | Twin-width | en |
dc.subject | kernelization | en |
dc.subject | Dominating Set | en |
dc.subject | lower bounds | en |
dc.subject.ddc | 004 | en |
dc.title | Twin-width and polynomial kernels | en |
dc.type | Communication / Conférence | |
dc.description.abstracten | We study the existence of polynomial kernels, for parameterized problems without a polynomial kernel on general graphs, when restricted to graphs of bounded twin-width. Our main result is that a polynomial kernel for k-Dominating Set on graphs of twin-width at most 4 would contradict a standard complexity-theoretic assumption. The reduction is quite involved, especially to get the twin-width upper bound down to 4, and can be tweaked to work for Connected k-Dominating Set and Total k-Dominating Set (albeit with a worse upper bound on the twin-width). The k-Independent Set problem admits the same lower bound by a much simpler argument, previously observed [ICALP '21], which extends to k-Independent Dominating Set, k-Path, k-Induced Path, k-Induced Matching, etc. On the positive side, we obtain a simple quadratic vertex kernel for Connected k-Vertex Cover and Capacitated k-Vertex Cover on graphs of bounded twin-width. Interestingly the kernel applies to graphs of Vapnik-Chervonenkis density 1, and does not require a witness sequence. We also present a more intricate O(k^1.5) vertex kernel for Connected k-Vertex Cover. Finally we show that deciding if a graph has twin-width at most 1 can be done in polynomial time, and observe that most optimization/decision graph problems can be solved in polynomial time on graphs of twin-width at most 1. | en |
dc.identifier.citationpages | 6:1-6:13 | en |
dc.relation.ispartofeditor | Golovach, Petr A. | |
dc.relation.ispartofeditor | Zehavi, Meirav | |
dc.relation.ispartofpublname | Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik | en |
dc.subject.ddclabel | Informatique générale | en |
dc.relation.ispartofisbn | 978-3-95977-216-7 | en |
dc.relation.conftitle | 16th International Symposium on Parameterized and Exact Computation, IPEC 2021 | en |
dc.relation.confdate | 2021-09 | |
dc.relation.confcity | Lisbon | en |
dc.relation.confcountry | Portugal | en |
dc.relation.forthcoming | non | en |
dc.description.ssrncandidate | non | |
dc.description.halcandidate | non | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.relation.Isversionofjnlpeerreviewed | non | en |
dc.date.updated | 2022-02-28T09:22:56Z | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut | |