
Twin-width and polynomial kernels
Bonnet, Edouard; Kim, Eun Jung; Reinald, Amadeus; Thomassé, Stéphan; Watrigant, Rémi (2021), Twin-width and polynomial kernels, 16th International Symposium on Parameterized and Exact Computation, IPEC 2021, 2021-09, Lisbon, Portugal
Voir/Ouvrir
Type
Communication / ConférenceDate
2021Titre du colloque
16th International Symposium on Parameterized and Exact Computation, IPEC 2021Date du colloque
2021-09Ville du colloque
LisbonPays du colloque
PortugalAuteurs de l’ouvrage
Golovach, Petr A.; Zehavi, MeiravÉditeur
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
Isbn
978-3-95977-216-7
Pages
6:1-6:13
Métadonnées
Afficher la notice complèteAuteur(s)
Bonnet, EdouardLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Kim, Eun Jung
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Reinald, Amadeus
Thomassé, Stéphan
Watrigant, Rémi
Résumé (EN)
We study the existence of polynomial kernels, for parameterized problems without a polynomial kernel on general graphs, when restricted to graphs of bounded twin-width. Our main result is that a polynomial kernel for k-Dominating Set on graphs of twin-width at most 4 would contradict a standard complexity-theoretic assumption. The reduction is quite involved, especially to get the twin-width upper bound down to 4, and can be tweaked to work for Connected k-Dominating Set and Total k-Dominating Set (albeit with a worse upper bound on the twin-width). The k-Independent Set problem admits the same lower bound by a much simpler argument, previously observed [ICALP '21], which extends to k-Independent Dominating Set, k-Path, k-Induced Path, k-Induced Matching, etc. On the positive side, we obtain a simple quadratic vertex kernel for Connected k-Vertex Cover and Capacitated k-Vertex Cover on graphs of bounded twin-width. Interestingly the kernel applies to graphs of Vapnik-Chervonenkis density 1, and does not require a witness sequence. We also present a more intricate O(k^1.5) vertex kernel for Connected k-Vertex Cover. Finally we show that deciding if a graph has twin-width at most 1 can be done in polynomial time, and observe that most optimization/decision graph problems can be solved in polynomial time on graphs of twin-width at most 1.Mots-clés
Twin-width; kernelization; Dominating Set; lower boundsPublications associées
Affichage des éléments liés par titre et auteur.
-
Bonnet, Edouard; Geniet, Colin; Kim, Eun Jung; Thomassé, Stéphan; Watrigant, Rémi (2021) Communication / Conférence
-
Bonnet, Edouard; Geniet, Colin; Kim, Eun Jung; Thomassé, Stéphan; Watrigant, Rémi (2021) Communication / Conférence
-
Bonnet, Edouard; Kim, Eun Jung; Thomassé, Stéphan; Watrigant, Rémi (2020) Communication / Conférence
-
Bonnet, Edouard; Kim, Eun Jung; Reinald, Amadeus; Thomassé, Stéphan (2022) Communication / Conférence
-
Bonamy, Marthe; Bonnet, Edouard; Bousquet, Nicolas; Charbit, Pierre; Giannopoulos, Panos; Kim, Eun Jung; Rzążewski, P.; Sikora, Florian; Thomassé, S. (2021) Article accepté pour publication ou publié