• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Convergence of a Piggyback-style method for the differentiation of solutions of standard saddle-point problems

Bogensperger, Lea; Chambolle, Antonin; Pock, Thomas (2022), Convergence of a Piggyback-style method for the differentiation of solutions of standard saddle-point problems. https://basepub.dauphine.psl.eu/handle/123456789/22785

View/Open
GradPDLoss_BogChaPoc.pdf (5.436Mb)
Type
Document de travail / Working paper
External document link
https://hal.archives-ouvertes.fr/hal-03516542
Date
2022
Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSL
Published in
Paris
Pages
22
Metadata
Show full item record
Author(s)
Bogensperger, Lea
Institute for Computer Graphics and Vision [Graz] [ICG]
Chambolle, Antonin cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Pock, Thomas
Institute for Computer Graphics and Vision [Graz] [ICG]
Abstract (EN)
We analyse a "piggyback"-style method for computing the derivative of a loss which depends on the solution of a convex-concave saddle point problems, with respect to the bilinear term. We attempt to derive guarantees for the algorithm under minimal regularity assumption on the functions. Our final convergence results include possibly nonsmooth objectives. We illustrate the versatility of the proposed piggyback algorithm by learning optimized shearlet transforms, which are a class of popular sparsifying transforms in the field of imaging.
Subjects / Keywords
First-order methods; saddle-point problems; differentiation; adjoint methods; piggyback algorithm; learning

Related items

Showing items related by title and author.

  • Thumbnail
    Learning Consistent Discretizations of the Total Variation 
    Chambolle, Antonin; Pock, Thomas (2021) Article accepté pour publication ou publié
  • Thumbnail
    Approximating the total variation with finite differences or finite elements 
    Chambolle, Antonin; Pock, Thomas (2021) Chapitre d'ouvrage
  • Thumbnail
    Geometric properties of solutions to the total variation denoising problem 
    Chambolle, Antonin; Duval, Vincent; Peyré, Gabriel; Poon, Clarice (2016) Article accepté pour publication ou publié
  • Thumbnail
    Existence of Weak Solutions for the Unsteady Interaction of a Viscous Fluid with an Elastic Plate 
    Chambolle, Antonin; Desjardins, Benoît; Esteban, Maria J.; Grandmont, Céline (2005) Article accepté pour publication ou publié
  • Thumbnail
    C∞ regularity of the free boundary for a two–dimensional optimal compliance problem 
    Chambolle, Antonin; Larsen, Christopher J. (2003) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo