EPTAS for stable allocations in matching games
hal.structure.identifier | Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE] | |
dc.contributor.author | Garrido-Lucero, Felipe | |
hal.structure.identifier | Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE] | |
dc.contributor.author | Laraki, Rida
HAL ID: 179670 ORCID: 0000-0002-4898-2424 | |
dc.date.accessioned | 2022-02-28T09:14:22Z | |
dc.date.available | 2022-02-28T09:14:22Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | https://basepub.dauphine.psl.eu/handle/123456789/22784 | |
dc.language.iso | en | en |
dc.subject | EPTAS | en |
dc.subject | Stable Matching | en |
dc.subject | Generalized Nash Equilibrium | en |
dc.subject | Zero-sum Games | en |
dc.subject | Infinitely repeated Games | en |
dc.subject | Matching with Transfer | en |
dc.subject.ddc | 004 | en |
dc.title | EPTAS for stable allocations in matching games | en |
dc.type | Document de travail / Working paper | |
dc.description.abstracten | Gale-Shapley introduced a matching problem between two sets of agents where each agent on one side has a preference over the agents of the other side and proved algorithmically the existence of a pairwise stable matching (i.e. no uncoupled pair can be better off by matching). Shapley-Shubik, Demange-Gale, and many others extended the model by allowing monetary transfers. In this paper, we study an extension where matched couples obtain their payoffs as the outcome of a strategic game and more particularly a solution concept that combines Gale-Shapley pairwise stability with a constrained Nash equilibrium notion (no player can increase its payoff by playing a different strategy without violating the participation constraint of the partner). Whenever all couples play zero-sum matrix games, strictly competitive bi-matrix games, or infinitely repeated bi-matrix games, we can prove that a modification of some algorithms in the literature converge to an ε-stable allocation in at most O(1ε) steps where each step is polynomial (linear with respect to the number of players and polynomial of degree at most 5 with respect to the number of pure actions per player). | en |
dc.publisher.city | Paris | en |
dc.relation.ispartofseriestitle | Preprint Lamsade | en |
dc.subject.ddclabel | Informatique générale | en |
dc.description.ssrncandidate | non | |
dc.description.halcandidate | non | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.date.updated | 2022-02-28T09:13:11Z | |
hal.author.function | aut | |
hal.author.function | aut |