
Best Arm Identification in Graphical Bilinear Bandits
Voir/Ouvrir
Type
Communication / ConférenceDate
2021Date du colloque
2021Pays du colloque
UNITED STATESÉditeur
Proceedings of the 38th International Conference on Machine Learning
Pages
139:9010-9019
Métadonnées
Afficher la notice complèteRésumé (EN)
We introduce a new graphical bilinear bandit problem where a learner (or a \emph{central entity}) allocates arms to the nodes of a graph and observes for each edge a noisy bilinear reward representing the interaction between the two end nodes. We study the best arm identification problem in which the learner wants to find the graph allocation maximizing the sum of the bilinear rewards. By efficiently exploiting the geometry of this bandit problem, we propose a \emph{decentralized} allocation strategy based on random sampling with theoretical guarantees. In particular, we characterize the influence of the graph structure (e.g. star, complete or circle) on the convergence rate and propose empirical experiments that confirm this dependency.Mots-clés
graphical bilinear banditPublications associées
Affichage des éléments liés par titre et auteur.
-
Meunier, Laurent; Chevaleyre, Yann; Rapin, J.; Royer, Clément; Teytaud, O. (2020) Communication / Conférence
-
Meunier, Laurent; Chevaleyre, Yann; Rapin, J.; Royer, Clément; Teytaud, O. (2020) Communication / Conférence
-
Benhamou, Éric; Atif, Jamal; Laraki, Rida; Saltiel, David (2020) Document de travail / Working paper
-
Fu, Ying (2016-12-09) Thèse
-
Bich, Philippe; Laraki, Rida (2017) Article accepté pour publication ou publié