• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail

Localization of a one-dimensional simple random walk among power-law renewal obstacles

Poisat, Julien; Simenhaus, François (2022), Localization of a one-dimensional simple random walk among power-law renewal obstacles. https://basepub.dauphine.psl.eu/handle/123456789/22775

Voir/Ouvrir
localizationArxiv.pdf (583.9Kb)
Type
Document de travail / Working paper
Lien vers un document non conservé dans cette base
https://hal.archives-ouvertes.fr/hal-03526023
Date
2022
Titre de la collection
Cahier de recherche CEREMADE, Université Paris Dauphine-PSL
Ville d’édition
Paris
Pages
55
Métadonnées
Afficher la notice complète
Auteur(s)
Poisat, Julien
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Simenhaus, François
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Résumé (EN)
We consider a one-dimensional simple random walk killed by quenched soft obstacles. The position of the obstacles is drawn according to a renewal process with a power-law increment distribution. In a previous work, we computed the large-time asymptotics of the quenched survival probability. In the present work we continue our study by describing the behaviour of the random walk conditioned to survive. We prove that with large probability, the walk quickly reaches a unique time-dependent optimal gap that is free from obstacle and gets localized there. We actually establish a dichotomy. If the renewal tail exponent is smaller than one then the walk hits the optimal gap and spends all of its remaining time inside, up to finitely many visits to the bottom of the gap. If the renewal tail exponent is larger than one then the random walk spends most of its time inside of the optimal gap but also performs short outward excursions, for which we provide matching upper and lower bounds on their length and cardinality. Our key tools include a Markov renewal interpretation of the survival probability as well as various comparison arguments for obstacle environments. Our results may also be rephrased in terms of localization properties for a directed polymer among multiple repulsive interfaces.
Mots-clés
Random walks in random obstacles; polymers in random environments; parabolic Anderson model; survival probability; localization; one-city theorem; Markov renewal processes

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    A limit theorem for the survival probability of a simple random walk among power-law renewal obstacles 
    Poisat, Julien; Simenhaus, François (2020) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    A limit theorem for the survival probability of a simple random walk among power-law renewal traps 
    Poisat, Julien; Simenhaus, François (2018) Document de travail / Working paper
  • Vignette de prévisualisation
    Evolution of a passive particle in a one-dimensional diffusive environment 
    Huveneers, François; Simenhaus, François (2020) Document de travail / Working paper
  • Vignette de prévisualisation
    Interacting electrons in a random medium: a simple one-dimensional model 
    Veniaminov, Nikolaj; Klopp, Frédéric (2014) Document de travail / Working paper
  • Vignette de prévisualisation
    Random walk driven by simple exclusion process 
    Huveneers, François; Simenhaus, François (2015) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo