• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

A Dimension-free Computational Upper-bound for Smooth Optimal Transport Estimation

Vacher, Jonathan; Muzellec, Boris; Rudi, Alessandro; Bach, Francis; Vialard, François-Xavier (2021), A Dimension-free Computational Upper-bound for Smooth Optimal Transport Estimation, in Mikhail Belkin, Samory Kpotufe, Proceedings of Machine Learning Research, vol. 134, COLT 2021 - 34th Annual Conference on Learning Theory, Journal of Machine Learning Research, p. 4143-4173

Type
Communication / Conférence
External document link
https://hal.archives-ouvertes.fr/hal-03454237/document
Date
2021
Conference title
COLT 2021 - 34th Annual Conference on Learning Theory
Conference date
2021-08
Conference city
Boulder
Conference country
United States
Book title
Proceedings of Machine Learning Research, vol. 134, COLT 2021 - 34th Annual Conference on Learning Theory
Book author
Mikhail Belkin, Samory Kpotufe
Publisher
Journal of Machine Learning Research
Pages
4143-4173
Metadata
Show full item record
Author(s)
Vacher, Jonathan
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Laboratoire des systèmes perceptifs [LSP]
Muzellec, Boris
Statistical Machine Learning and Parsimony [SIERRA]
Rudi, Alessandro cc
Statistical Machine Learning and Parsimony [SIERRA]
Bach, Francis
Statistical Machine Learning and Parsimony [SIERRA]
Vialard, François-Xavier
Laboratoire d'Informatique Gaspard-Monge [LIGM]
Abstract (EN)
It is well-known that plug-in statistical estimation of optimal transport suffers from the curse of dimensionality. Despite recent efforts to improve the rate of estimation with the smoothness of the problem, the computational complexity of these recently proposed methods still degrade exponentially with the dimension. In this paper, thanks to an infinitedimensional sum-of-squares representation, we derive a statistical estimator of smooth optimal transport which achieves a precision ε fromÕ(ε −2) independent and identically distributed samples from the distributions, for a computational cost ofÕ(ε −4) when the smoothness increases, hence yielding dimension-free statistical and computational rates, with potentially exponentially dimension-dependent constants.

Related items

Showing items related by title and author.

  • Thumbnail
    Near-optimal estimation of smooth transport maps with kernel sums-of-squares 
    Muzellec, Boris; Vacher, Jonathan; Bach, Francis; Vialard, François-Xavier; Rudi, Alessandro (2021) Document de travail / Working paper
  • Thumbnail
    Convex transport potential selection with semi-dual criterion 
    Vacher, Jonathan; Vialard, François-Xavier (2021) Document de travail / Working paper
  • Thumbnail
    Second order models for optimal transport and cubic splines on the Wasserstein space 
    Benamou, Jean-David; Gallouët, Thomas; Vialard, François-Xavier (2019) Article accepté pour publication ou publié
  • Thumbnail
    Optimal Transport for Diffeomorphic Registration 
    Feydy, Jean; Charlier, Benjamin; Vialard, François-Xavier; Peyré, Gabriel (2017) Communication / Conférence
  • Thumbnail
    Interpolating between Optimal Transport and MMD using Sinkhorn Divergences 
    Feydy, Jean; Séjourné, Thibault; Vialard, François-Xavier; Amari, Shun-ichi; Trouvé, Alain; Peyré, Gabriel (2018) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo