A stochastic thermalization of the Discrete Nonlinear Schrödinger Equation
Hannani, Amirali; Olla, Stefano (2021), A stochastic thermalization of the Discrete Nonlinear Schrödinger Equation. https://basepub.dauphine.psl.eu/handle/123456789/22770
View/ Open
Type
Document de travail / Working paperDate
2021Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSLPublished in
Paris
Pages
32
Metadata
Show full item recordAuthor(s)
Hannani, AmiraliCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Olla, Stefano

CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We introduce a mass conserving stochastic perturbation of the discrete nonlinear Schrödinger equation that models the action of a heat bath at a given temperature. We prove that the corresponding canonical Gibbs distribution is the unique invariant measure. In the onedimensional cubic focusing case on the torus, we prove that in the limit for large time, continuous approximation, and low temperature, the solution converges to the steady wave of the continuous equation that minimizes the energy for a given mass.Subjects / Keywords
Non-linear Schrodinger equation; multiplicative noise; thermalization; soliton conjectureRelated items
Showing items related by title and author.
-
Ryzhik, Lenya; Olla, Stefano; Komorowski, Tomasz (2013) Article accepté pour publication ou publié
-
Gontier, David; Lewin, Mathieu; Nazar, Faizan Q. (2021) Article accepté pour publication ou publié
-
Chatterjee, Sourav; Kirkpatrick, Kay (2012) Article accepté pour publication ou publié
-
Lions, Pierre-Louis (1988) Article accepté pour publication ou publié
-
Cardaliaguet, Pierre; Souganidis, Panagiotis E. (2015) Article accepté pour publication ou publié