• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Handling Correlations in Random Forests: which Impacts on Variable Importance and Model Interpretability?

Chavent, Marie; Lacaille, Jerome; Mourer, Alex; Olteanu, Madalina (2021), Handling Correlations in Random Forests: which Impacts on Variable Importance and Model Interpretability?, ESANN 2021 - Proceedings, i6doc.com, p. 569-574. 10.14428/esann/2021.ES2021-155

View/Open
SMDA_ESANN2021_Corrected_(2).pdf (200.2Kb)
Type
Communication / Conférence
Date
2021
Conference title
29th European Symposium on Artificial Neutral Networks, Computational Intelligence and Machine Learning
Conference date
2021-10
Conference city
OnLine
Book title
ESANN 2021 - Proceedings
Publisher
i6doc.com
ISBN
978287587082-7
Number of pages
675
Pages
569-574
Publication identifier
10.14428/esann/2021.ES2021-155
Metadata
Show full item record
Author(s)
Chavent, Marie cc
Méthodes avancées d’apprentissage statistique et de contrôle [ASTRAL]
Lacaille, Jerome
Safran Aircraft Engines
Mourer, Alex
Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) [SAMM]
Olteanu, Madalina
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
The present manuscript tackles the issues of model interpretability and variable importance in random forests, in the presence of correlated input variables. Variable importance criteria based on random permutations are known to be sensitive when input variables are correlated, and may lead for instance to unreliability in the importance ranking. In order to overcome some of the problems raised by correlation, an original variable importance measure is introduced. The proposed measure builds upon an algorithm which clusters the input variables based on their correlations, and summarises each such cluster by a synthetic variable. The effectiveness of the proposed criterion is illustrated through simulations in a regression context, and compared with several existing variable importance measures.

Related items

Showing items related by title and author.

  • Thumbnail
    Sparse Weighted K-Means for Groups of Mixed-Type Variables 
    Chavent, Marie; Olteanu, Madalina; Cottrell, Marie; Lacaille, Jérôme; Mourer, Alex (2022) Communication / Conférence
  • Thumbnail
    Sparse Weighted K-Means for Groups of Mixed-Type Variables 
    Chavent, Marie; Olteanu, Madalina; Cottrell, Marie; Lacaille, Jérôme; Mourer, Alex (2022) Communication / Conférence
  • Thumbnail
    Sparse and group-sparse clustering for mixed data An illustration of the vimpclust package 
    Chavent, Marie; Lacaille, Jérôme; Mourer, Alex; Olteanu, Madalina (2022) Communication / Conférence
  • Thumbnail
    Sparse k-means for mixed data via group-sparse clustering 
    Chavent, Marie; Lacaille, Jerome; Mourer, Alex; Olteanu, Madalina (2020) Communication / Conférence
  • Thumbnail
    Proceedings of 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM+) 2017 
    Lamirel, Jean-Charles; Cottrell, Marie; Olteanu, Madalina (2017) Ouvrage
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo