Show simple item record

hal.structure.identifierLaboratoire de Mathématiques d'Orsay [LMO]
dc.contributor.authorNatale, Andrea
HAL ID: 19800
hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorTodeschi, Gabriele
dc.date.accessioned2022-02-25T13:40:38Z
dc.date.available2022-02-25T13:40:38Z
dc.date.issued2020
dc.identifier.urihttps://basepub.dauphine.psl.eu/handle/123456789/22762
dc.language.isoenen
dc.subjectEnergy diminishing schemeen
dc.subjectWasserstein gradient flowsen
dc.subject.ddc515en
dc.titleTPFA Finite Volume Approximation of Wasserstein Gradient Flowsen
dc.typeCommunication / Conférence
dc.description.abstractenNumerous infinite dimensional dynamical systems arising in different fields have been shown to exhibit a gradient flow structure in the Wasserstein space. We construct Two Point Flux Approximation Finite Volume schemes discretizing such problems which preserve the variational structure and have second order accuracy in space. We propose an interior point method to solve the discrete variational problem, providing an efficient and robust algorithm. We present two applications to test the scheme and show its order of convergence.en
dc.identifier.citationpages193-201en
dc.relation.ispartoftitleFinite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examplesen
dc.relation.ispartofeditorDr. Robert Klöfkorn, Dr. Eirik Keilegavlen, Prof. Dr. Florin A. Radu, Prof. Jürgen Fuhrmann
dc.relation.ispartofpublnameSpringeren
dc.relation.ispartofpublcityBerlin Heidelbergen
dc.relation.ispartofdate2020
dc.relation.ispartofurl10.1007/978-3-030-43651-3en
dc.subject.ddclabelAnalyseen
dc.relation.ispartofisbn978-3-030-43650-6en
dc.relation.conftitleFVCA 9en
dc.relation.confdate2020-06
dc.relation.confcityBergenen
dc.relation.confcountryNorwayen
dc.relation.forthcomingnonen
dc.identifier.doi10.1007/978-3-030-43651-3_16en
dc.description.ssrncandidatenon
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewednonen
dc.date.updated2022-02-25T13:35:30Z
hal.author.functionaut
hal.author.functionaut


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record