• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

TPFA Finite Volume Approximation of Wasserstein Gradient Flows

Natale, Andrea; Todeschi, Gabriele (2020), TPFA Finite Volume Approximation of Wasserstein Gradient Flows, in Dr. Robert Klöfkorn, Dr. Eirik Keilegavlen, Prof. Dr. Florin A. Radu, Prof. Jürgen Fuhrmann, Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples, Springer : Berlin Heidelberg, p. 193-201. 10.1007/978-3-030-43651-3_16

View/Open
LJKO_ipm_hal.pdf (315.4Kb)
Type
Communication / Conférence
Date
2020
Conference title
FVCA 9
Conference date
2020-06
Conference city
Bergen
Conference country
Norway
Book title
Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples
Book author
Dr. Robert Klöfkorn, Dr. Eirik Keilegavlen, Prof. Dr. Florin A. Radu, Prof. Jürgen Fuhrmann
Publisher
Springer
Published in
Berlin Heidelberg
ISBN
978-3-030-43650-6
Pages
193-201
Publication identifier
10.1007/978-3-030-43651-3_16
Metadata
Show full item record
Author(s)
Natale, Andrea
Laboratoire de Mathématiques d'Orsay [LMO]
Todeschi, Gabriele
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
Numerous infinite dimensional dynamical systems arising in different fields have been shown to exhibit a gradient flow structure in the Wasserstein space. We construct Two Point Flux Approximation Finite Volume schemes discretizing such problems which preserve the variational structure and have second order accuracy in space. We propose an interior point method to solve the discrete variational problem, providing an efficient and robust algorithm. We present two applications to test the scheme and show its order of convergence.
Subjects / Keywords
Energy diminishing scheme; Wasserstein gradient flows

Related items

Showing items related by title and author.

  • Thumbnail
    Finite volume approximation of optimal transport and Wasserstein gradient flows 
    Todeschi, Gabriele (2021-12-13) Thèse
  • Thumbnail
    From geodesic extrapolation to a variational BDF2 scheme for Wasserstein gradient flows 
    Gallouët, Thomas; Natale, Andrea; Todeschi, Gabriele (2022) Document de travail / Working paper
  • Thumbnail
    A variational finite volume scheme for Wasserstein gradient flows 
    Cancès, Clément; Gallouët, Thomas; Todeschi, Gabriele (2020) Article accepté pour publication ou publié
  • Thumbnail
    Computation of optimal transport with finite volumes 
    Natale, Andrea; Todeschi, Gabriele (2021) Article accepté pour publication ou publié
  • Thumbnail
    A mixed finite element discretization of dynamical optimal transport 
    Natale, Andrea; Todeschi, Gabriele (2022) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo