• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

L2-Hypocoercivity and large time asymptotics of the linearized Vlasov-Poisson-Fokker-Planck system

Addala, Lanoir; Dolbeault, Jean; Li, Xingyu; Lazhar Tayeb, Mohamed (2021), L2-Hypocoercivity and large time asymptotics of the linearized Vlasov-Poisson-Fokker-Planck system, Journal of Statistical Physics, 184. 10.1007/s10955-021-02784-4

View/Open
VPFP-ADLT-2021.pdf (391.0Kb)
Type
Article accepté pour publication ou publié
Date
2021
Journal name
Journal of Statistical Physics
Volume
184
Publisher
Springer
Publication identifier
10.1007/s10955-021-02784-4
Metadata
Show full item record
Author(s)
Addala, Lanoir
Dolbeault, Jean cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Li, Xingyu
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Lazhar Tayeb, Mohamed
Abstract (EN)
This paper is devoted to the linearized Vlasov-Poisson-Fokker-Planck system in presence of an external potential of confinement. We investigate the large time behaviour of the solutions using hypocoercivity methods and a notion of scalar product adapted to the presence of a Poisson coupling. Our framework provides estimates which are uniform in the diffusion limit. As an application in a simple case, we study the one-dimensional case and prove the exponential convergence of the nonlinear Vlasov-Poisson-Fokker-Planck system without any small mass assumption.
Subjects / Keywords
diffusion limit; drift-diffusion equations; hypocoercivity; Vlasov–Poisson-Fokker–Planck system; convergence to equilibrium; confinement; electrostatic forces; Poisson coupling; Fokker-Planck operator; Vlasov equation; large-time behavior; rate of convergence

Related items

Showing items related by title and author.

  • Thumbnail
    Free energy and solutions of the Vlasov-Poisson-Fokker-Planck system: external potential and confinement (Large time behavior and steady states) 
    Dolbeault, Jean (1999) Article accepté pour publication ou publié
  • Thumbnail
    φ -Entropies: convexity, coercivity and hypocoercivity for Fokker–Planck and kinetic Fokker–Planck equations 
    Dolbeault, Jean; Li, Xingyu (2018) Article accepté pour publication ou publié
  • Thumbnail
    Time-dependent rescalings and Lyapunov functionals for the Vlasov-Poisson and Euler-Poisson systems, and for related models of kinetic equations, fluid dynamics and quantum physics 
    Dolbeault, Jean; Rein, Gerhard (2001) Article accepté pour publication ou publié
  • Thumbnail
    Monokinetic charged particle beams: qualitative behavior of the solutions of the Cauchy problem and 2d time-periodic solutions of the Vlasov-Poisson system 
    Dolbeault, Jean (2000) Article accepté pour publication ou publié
  • Thumbnail
    Large Time Asymptotic of Nonlinear Drift-Diffusion Systems with Poisson Coupling 
    Biler, Piotr; Dolbeault, Jean; Markowich, Peter (2001) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo