
Streaming Algorithms for Online Selection Problems
Correa, José; Dütting, Paul; Fischer, Felix; Schewior, Kevin; Ziliotto, Bruno (2021), Streaming Algorithms for Online Selection Problems, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021), Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik. 10.4230/LIPIcs.ITCS.2021.86
View/ Open
Type
Communication / ConférenceDate
2021Conference title
12th Innovations in Theoretical Computer Science Conference (ITCS 2021)Conference date
2021Conference city
virtualBook title
12th Innovations in Theoretical Computer Science Conference (ITCS 2021)Publisher
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
Publication identifier
Metadata
Show full item recordAuthor(s)
Correa, JoséUniversidad de Chile = University of Chile [Santiago] [UCHILE]
Dütting, Paul
Fischer, Felix
Schewior, Kevin
Universidad de Santiago de Chile [Santiago] [USACH]
Ziliotto, Bruno
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
A prophet inequality states, for some α∈[0,1], that the expected value achievable by a gambler who sequentially observes random variables X1,…,Xn and selects one of them is at least an α fraction of the maximum value in the sequence. We obtain three distinct improvements for a setting that was first studied by Correa et al. (EC, 2019) and is particularly relevant to modern applications in algorithmic pricing. In this setting, the random variables are i.i.d. from an unknown distribution and the gambler has access to an additional βn samples for some β≥0. We first give improved lower bounds on α for a wide range of values of β; specifically, α≥(1+β)/e when β≤1/(e−1), which is tight, and α≥0.648 when β=1, which improves on a bound of around 0.635 due to Correa et al. (SODA, 2020). Adding to their practical appeal, specifically in the context of algorithmic pricing, we then show that the new bounds can be obtained even in a streaming model of computation and thus in situations where the use of relevant data is complicated by the sheer amount of data available. We finally establish that the upper bound of 1/e for the case without samples is robust to additional information about the distribution, and applies also to sequences of i.i.d. random variables whose distribution is itself drawn, according to a known distribution, from a finite set of known candidate distributions. This implies a tight prophet inequality for exchangeable sequences of random variables, answering a question of Hill and Kertz (Contemporary Mathematics, 1992), but leaves open the possibility of better guarantees when the number of candidate distributions is small, a setting we believe is of strong interest to applications.Subjects / Keywords
Prophet Inequalities; Stopping Theory; Unknown DistributionsRelated items
Showing items related by title and author.
-
Demetrescu, Camil; Escoffier, Bruno; Moruz, Gabriel; Ribichini, Andrea (2006) Document de travail / Working paper
-
Aziz, Haris; Brill, Markus; Fischer, Felix; Harrenstein, Paul; Lang, Jérôme; Seedig, Hans Georg (2015) Article accepté pour publication ou publié
-
Aziz, Haris; Harrenstein, Paul; Brill, Markus; Lang, Jérôme; Fischer, Felix; Seedig, Hans Georg (2012) Communication / Conférence
-
Paschos, Vangelis; Escoffier, Bruno (2006) Article accepté pour publication ou publié
-
Ausiello, Giorgio; Giannakos, Aristotelis; Paschos, Vangelis (2006) Communication / Conférence