• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

An explicit split point procedure in model-based trees allowing for a quick fitting of GLM trees and GLM forests

Dutang, Christophe; Guibert, Quentin (2022), An explicit split point procedure in model-based trees allowing for a quick fitting of GLM trees and GLM forests, Statistics and Computing, 32, p. numéro 6. 10.1007/s11222-021-10059-x

View/Open
GLM-tree-forest.pdf (501.2Kb)
Type
Article accepté pour publication ou publié
Date
2022
Journal name
Statistics and Computing
Volume
32
Publisher
Springer
Pages
numéro 6
Publication identifier
10.1007/s11222-021-10059-x
Metadata
Show full item record
Author(s)
Dutang, Christophe cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Guibert, Quentin cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
Classification and regression trees (CART) prove to be a true alternative to full parametric models such as linear models (LM) and generalized linear models (GLM). Although CART suffer from a biased variable selection issue, they are commonly applied to various topics and used for tree ensembles and random forests because of their simplicity and computation speed. Conditional inference trees and model-based trees algorithms for which variable selection is tackled via fluctuation tests are known to give more accurate and interpretable results than CART, but yield longer computation times. Using a closed-form maximum likelihood estimator for GLM, this paper proposes a split point procedure based on the explicit likelihood in order to save time when searching for the best split for a given splitting variable. A simulation study for non-Gaussian response is performed to assess the computational gain when building GLM trees. We also propose a benchmark on simulated and empirical datasets of GLM trees against CART, conditional inference trees and LM trees in order to identify situations where GLM trees are efficient. This approach is extended to multiway split trees and log-transformed distributions. Making GLM trees possible through a new split point procedure allows us to investigate the use of GLM in ensemble methods. We propose a numerical comparison of GLM forests against other random forest-type approaches. Our simulation analyses show cases where GLM forests are good challengers to random forests.
Subjects / Keywords
GLM; model-based recursive partitioning; GLM trees; random forest; GLM forest

Related items

Showing items related by title and author.

  • Thumbnail
    Closed-form maximum likelihood estimator for generalized linear models in the case of categorical explanatory variables: application to insurance loss modeling 
    Brouste, Alexandre; Dutang, Christophe; Rohmer, Tom (2019) Article accepté pour publication ou publié
  • Thumbnail
    On a Markovian game model for competitive insurance pricing 
    Mouminoux, Claire; Dutang, Christophe; Loisel, Stéphane; Albrecher, Hansjoerg (2021) Article accepté pour publication ou publié
  • Thumbnail
    Modèle de structuration et d'évaluation des scénarios des technologies de l'hydrogène du point de vue de l'acceptabilité sociale 
    Kpoumié, Amidou (2013-07) Thèse
  • Thumbnail
    Nouveaux modèles robustes et probabilistes pour la localisation d'abris dans un contexte de feux de forêt 
    Haddad, Marcel Adonis (2020-12-14) Thèse
  • Thumbnail
    Design and Run Your Object Models in the Cloud with MyDraft - An Agile Model-driven Cloud-based Platform for Data-oriented Rich Web Applications 
    Zamfiroiu, Michel (2012) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo