• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Predicting the Solar Potential of Rooftops using Image Segmentation and Structured Data

de Barros Soares, Daniel; Andrieux, François; Hell, Bastien; Lenhardt, Julien; Badosa, Jordi; Gavoille, Sylvain; Bacry, Emmanuel (2021), Predicting the Solar Potential of Rooftops using Image Segmentation and Structured Data, NIPS 2021, 2021-12, virtuel

View/Open
2106.15268.pdf (820.9Kb)
Type
Communication / Conférence
External document link
https://hal.archives-ouvertes.fr/hal-03438761
Date
2021
Conference title
NIPS 2021
Conference date
2021-12
Conference city
virtuel
Pages
8
Metadata
Show full item record
Author(s)
de Barros Soares, Daniel
Andrieux, François
Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information [CEA-LETI]
Hell, Bastien
Lenhardt, Julien
Badosa, Jordi
Laboratoire de Météorologie Dynamique (UMR 8539) [LMD]
Gavoille, Sylvain
Centre de Mise en Forme des Matériaux [CEMEF]
Bacry, Emmanuel cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
Estimating the amount of electricity that can be produced by rooftop photovoltaic systems is a time-consuming process that requires on-site measurements, a difficult task to achieve on a large scale. In this paper, we present an approach to estimate the solar potential of rooftops based on their location and architectural characteristics, as well as the amount of solar radiation they receive annually. Our technique uses computer vision to achieve semantic segmentation of roof sections and roof objects on the one hand, and a machine learning model based on structured building features to predict roof pitch on the other hand. We then compute the azimuth and maximum number of solar panels that can be installed on a rooftop with geometric approaches. Finally, we compute precise shading masks and combine them with solar irradiation data that enables us to estimate the yearly solar potential of a rooftop.

Related items

Showing items related by title and author.

  • Thumbnail
    Some limit theorems for Hawkes processes and application to financial statistics 
    Muzy, Jean-François; Delattre, Sylvain; Hoffmann, Marc; Bacry, Emmanuel (2013) Article accepté pour publication ou publié
  • Thumbnail
    Screening anxiolytics, hypnotics, antidepressants and neuroleptics for bone fracture risk among elderly: a nation-wide dynamic multivariate self-control study using the SNDS claims database 
    Morel, Maryan; Bouyer, Benjamin; Guilloux, Agathe; LAANANI, Moussa; Leroy, Fanny; Nguyen, Dinh Phong; Sebiat, Youcef; Bacry, Emmanuel; Gaïffas, Stéphane (2021) Document de travail / Working paper
  • Thumbnail
    Forecasting world and regional air traffic in the mid-term (2025): An econometric analysis of air traffic determinants using dynamic panel-data models 
    Chevallier, Julien; Chèze, Benoît; Gastineau, Pascal (2011) Communication / Conférence
  • Thumbnail
    Modelling microstructure noise with mutually exciting point processes 
    Muzy, Jean-François; Hoffmann, Marc; Delattre, Sylvain; Bacry, Emmanuel (2013) Article accepté pour publication ou publié
  • Thumbnail
    Diffeomorphic Atlas Estimation using Kärcher Mean and Geodesic Shooting on Volumetric Images 
    Risser, Laurent; Holm, Darryl; Rueckert, Daniel; Vialard, François-Xavier (2011) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo