• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Bisection for kinetically constrained models revisited

Hartarsky, Ivailo (2021), Bisection for kinetically constrained models revisited, Electronic Communications in Probability, 26, p. 1-10. 10.1214/21-ECP434

View/Open
21-ECP434.pdf (225.5Kb)
Type
Article accepté pour publication ou publié
Date
2021
Journal name
Electronic Communications in Probability
Volume
26
Publisher
Institute of Mathematical Statistics
Pages
1-10
Publication identifier
10.1214/21-ECP434
Metadata
Show full item record
Author(s)
Hartarsky, Ivailo cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
The bisection method for kinetically constrained models (KCM) of Cancrini, Martinelli, Roberto and Toninelli is a vital technique applied also beyond KCM. In this note we present a new way of performing it, based on a novel two-block dynamics with a probabilistic proof instead of the original spectral one. We illustrate the method by very directly proving an upper bound on the relaxation time of KCM like the one for the East model in a strikingly general setting. Namely, we treat KCM on finite or infinite one-dimensional volumes, with any boundary condition, conditioned on any of the irreducible components of the state space, with arbitrary site-dependent state spaces and, most importantly, arbitrary inhomogeneous rules.
Subjects / Keywords
Kinetically constrained models; interacting particle systems; Glauber dynamics; Poincaré inequality; bisection

Related items

Showing items related by title and author.

  • Thumbnail
    Universality for critical kinetically constrained models: infinite number of stable directions 
    Hartarsky, Ivailo; Marêché, Laure; Toninelli, Cristina (2020-06) Article accepté pour publication ou publié
  • Thumbnail
    Universality for critical kinetically constrained models: infinite number of stable directions 
    Hartarsky, Ivailo; Marêché, Laure; Toninelli, Cristina (2019) Document de travail / Working paper
  • Thumbnail
    Sharp threshold for the FA-2f kinetically constrained model 
    Hartarsky, Ivailo; Martinelli, Fabio; Toninelli, Cristina (2022) Article accepté pour publication ou publié
  • Thumbnail
    Percolation Bootstrap percolation and kinetically constrained models : Two-dimensional universality and beyond 
    Hartarsky, Ivailo (2022-01-07) Thèse
  • Thumbnail
    Weakly constrained-degree percolation on the hypercubic lattice 
    Hartarsky, Ivailo; N.B. de Lima, Bernardo (2022) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo