• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • Consulter le document
  •   Accueil
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail - No thumbnail

Influence Maximization With Co-Existing Seeds

Becker, Ruben; D'Angelo, Gianlorenzo; Gilbert, Hugo (2021), Influence Maximization With Co-Existing Seeds, CIKM '21: The 30th ACM International Conference on Information and Knowledge Management, ACM - Association for Computing Machinery : New York, NY, p. 100–109. 10.1145/3459637.3482439

Type
Communication / Conférence
Lien vers un document non conservé dans cette base
https://hal.archives-ouvertes.fr/hal-03501078
Date
2021
Titre du colloque
CIKM '21: The 30th ACM International Conference on Information and Knowledge Management
Date du colloque
2021-11
Ville du colloque
Queensland
Pays du colloque
Australia
Titre de l'ouvrage
CIKM '21: The 30th ACM International Conference on Information and Knowledge Management
Éditeur
ACM - Association for Computing Machinery
Ville d’édition
New York, NY
Isbn
978-1-4503-8446-9
Pages
100–109
Identifiant publication
10.1145/3459637.3482439
Métadonnées
Afficher la notice complète
Auteur(s)
Becker, Ruben
D'Angelo, Gianlorenzo
Gilbert, Hugo
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Résumé (EN)
In the classical influence maximization problem we aim to select a set of nodes, called seeds, to start an efficient information diffusion process. More precisely, the goal is to select seeds such that the expected number of nodes reached by the diffusion process is maximized. In this work we study a variant of this problem where an unknown (up to a probability distribution) set of nodes, referred to as co-existing seeds, joins in starting the diffusion process even if not selected. This setting allows to model that, in certain situations, some nodes are willing to act as "voluntary seeds'' even if not chosen by the campaign organizer. This may for example be due to the positive nature of the information campaign (e.g., public health awareness programs, HIV prevention, financial aid programs), or due to external social driving effects (e.g., nodes are friends of selected seeds in real life or in other social media).In this setting, we study two types of optimization problems. While the first one aims to maximize the expected number of reached nodes, the second one endeavors to maximize the expected increment in the number of reached nodes in comparison to a non-intervention strategy. The problems (particularly the second one) are motivated by cooperative game theory. For various probability distributions on co-existing seeds, we obtain several algorithms with approximation guarantees as well as hardness and hardness of approximation results. We conclude with experiments that demonstrate the usefulness of our approach when co-existing seeds exist.
Mots-clés
Graph algorithms; Social networks

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    Fairness in Influence Maximization through Randomization 
    Becker, Ruben; D'Angelo, Gianlorenzo; Ghobadi, Sajjad; Gilbert, Hugo (2021) Communication / Conférence
  • Vignette de prévisualisation
    Fairness in Influence Maximization through Randomization 
    Becker, Ruben; d'Angelo, Gianlorenzo; Ghobadi, Sajjad; Gilbert, Hugo (2022) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Group-Harmonic and Group-Closeness Maximization – Approximation and Engineering 
    Angriman, Eugenio; Becker, Ruben; D'Angelo, Gianlorenzo; Gilbert, Hugo; van der Grinten, Alexander; Meyerhenke, Henning (2021) Communication / Conférence
  • Vignette de prévisualisation
    Unveiling the Truth in Liquid Democracy with Misinformed Voters 
    Becker, Ruben; D’Angelo, Gianlorenzo; Delfaraz, Esmaeil; Gilbert, Hugo (2021) Communication / Conférence
  • Vignette de prévisualisation
    Computation and Bribery of Voting Power in Delegative Simple Games 
    d'Angelo, Gianlorenzo; Delfaraz, Esmaeil; Gilbert, Hugo (2022) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo