• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Worst-case Bounds for Spending a Common Budget

Cardi, Pierre; Gourvès, Laurent; Lesca, Julien (2021), Worst-case Bounds for Spending a Common Budget, in Endriss, Ulle; Nowé, Ann; Dignum, Frank; Lomuscio, Alessio, Proceedings of the 20th International Conference on Autonomous Agents and Multiagent Systems (AAMAS-2021), IFAAMAS, p. 288-296

View/Open
Halaamas21.pdf (1.104Mb)
Type
Communication / Conférence
Date
2021
Conference title
20th International Conference on Autonomous Agents and Multiagent Systems (AAMAS-2021)
Conference date
2021-05
Book title
Proceedings of the 20th International Conference on Autonomous Agents and Multiagent Systems (AAMAS-2021)
Book author
Endriss, Ulle; Nowé, Ann; Dignum, Frank; Lomuscio, Alessio
Publisher
IFAAMAS
ISBN
978-1-4503-8307-3
Pages
288-296
Metadata
Show full item record
Author(s)
Cardi, Pierre
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Gourvès, Laurent
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Lesca, Julien
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
We study the problem of spending a budget that is common to agents. Agents submit demands to a central planner who uses the budget to fund a subset of them. The utility of an agent is the part of the budget spent on her own accepted demands. In a fair solution, the successful demands of each agent would represent a 1/ fraction of the budget. However, this is rarely possible because every demand is indivisible, i.e. either accepted in its entirety or rejected. We are interested in worst-case bounds on the largest proportion of the budget that is dedicated to the least funded agent. Our approach is not to solve the corresponding max min problem for every instance, but to tackle the problem from a higher level. The size of the largest demand compared to the budget and the number of agents, are two parameters that significantly influence how much the worst-off agent gets. We propose worst-case bounds on the best utility of the least funded agent for the class of instances where the number of agents and the most expensive demand are fixed to given values. A characterization of this quantity is provided for 1 and 2 agents. For more than 2 agents, we propose lower and upper bounds that constitute a 14 15-approximation of the optimal value. Every existence result is complemented with a polynomial algorithm that builds a feasible solution satisfying our bounds.
Subjects / Keywords
Fairness; Computational Social Choice; Worst Case Analysis

Related items

Showing items related by title and author.

  • Thumbnail
    How Hard Is It for a Party to Nominate an Election Winner? 
    Faliszewski, Piotr; Gourvès, Laurent; Lang, Jérôme; Lesca, Julien; Monnot, Jérôme (2016) Communication / Conférence
  • Thumbnail
    Exploiting dominance conditions for computing non trivial worst-case complexity for bounded combinatorial optimization problems 
    Paschos, Vangelis; Della Croce, Federico (2008) Article accepté pour publication ou publié
  • Thumbnail
    An efficient algorithm for the transitive closure and a linear worst-case complexity result for a class of sparse graphs 
    Jaumard, Brigitte; Minoux, Michel (1986) Article accepté pour publication ou publié
  • Thumbnail
    Improved worst-case complexity for the MIN 3-SET COVERING problem 
    Paschos, Vangelis; Della Croce, Federico; Escoffier, Bruno (2007) Article accepté pour publication ou publié
  • Thumbnail
    Worst-case complexity of exact algorithms for NP-hard problems 
    Della Croce, Federico; Escoffier, Bruno; Kaminski, Marcin; Paschos, Vangelis (2008) Chapitre d'ouvrage
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo