• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • Consulter le document
  •   Accueil
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail

Stable Matching Games

Garrido Lucero, Felipe; Laraki, Rida (2021), Stable Matching Games. https://basepub.dauphine.psl.eu/handle/123456789/22654

Voir/Ouvrir
2008.01680.pdf (619.9Kb)
Type
Document de travail / Working paper
Date
2021
Titre de la collection
Preprint Lamsade
Ville d’édition
Paris
Métadonnées
Afficher la notice complète
Auteur(s)
Garrido Lucero, Felipe
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Laraki, Rida cc
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Résumé (EN)
Gale and Shapley introduced a matching problem between two sets of agents where each agent on one side has an exogenous preference ordering over the agents on the other side. They defined a matching as stable if no unmatched pair can both improve their utility by forming a new pair. They proved, algorithmically, the existence of a stable matching. Shapley and Shubik, Demange and Gale, and many others extended the model by allowing monetary transfers. We offer a further extension by assuming that matched couples obtain their payoff endogenously as the outcome of a strategic game they have to play in a usual non-cooperative sense (without commitment) or in a semi-cooperative way (with commitment, as the outcome of a bilateral binding contract in which each player is responsible for his/her part of the contract). Depending on whether the players can commit or not, we define in each case a solution concept that combines Gale-Shapley pairwise stability with a (generalized) Nash equilibrium stability. In each case, we give the necessary and sufficient conditions for the set of stable allocations to be non-empty, we study its geometry (full/semi-lattice), and provide an algorithm that converges to its maximal element. Finally, we prove that our second model (with commitment) encompasses and refines most of the literature (matching with monetary transfers as well as matching with contracts).
Mots-clés
Stable Matching; Generalized Nash Equilibrium; Zero-sum Games; Potential Games; Infinitely repeated Games; Matching with Contract; Matching with Transfer

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    EPTAS for stable allocations in matching games 
    Garrido-Lucero, Felipe; Laraki, Rida (2021) Document de travail / Working paper
  • Vignette de prévisualisation
    Analysis and design of a self-consumption community: a game-theoretic approach 
    Garrido Lucero, Felipe; Beaude, Olivier; Wan, Cheng (2019) Communication / Conférence
  • Vignette de prévisualisation
    Learning in nonatomic games, Part I: Finite action spaces and population games 
    Hadikhanloo, Saeed; Laraki, Rida; Mertikopoulos, Panayotis; Sorin, Sylvain (2021) Document de travail / Working paper
  • Vignette de prévisualisation
    Acyclic Gambling Game 
    Laraki, Rida; Renault, Jérôme (2017) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    On the Existence of Approximate Equilibria and Sharing Rule Solutions in Discontinuous Games 
    Bich, Philippe; Laraki, Rida (2017) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo