• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

On correctors for linear elliptic homogenization in the presence of local defects

Blanc, Xavier; Le Bris, Claude; Lions, Pierre-Louis (2019), On correctors for linear elliptic homogenization in the presence of local defects, Communications in Partial Differential Equations, 43, 6, p. 963-997. 10.1080/03605302.2018.1484764

View/Open
BLL-2017-1.pdf (459.4Kb)
Type
Article accepté pour publication ou publié
Date
2019
Journal name
Communications in Partial Differential Equations
Volume
43
Number
6
Publisher
Taylor & Francis
Pages
963-997
Publication identifier
10.1080/03605302.2018.1484764
Metadata
Show full item record
Author(s)
Blanc, Xavier
Laboratoire Jacques-Louis Lions [LJLL (UMR_7598)]
Le Bris, Claude
Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique [CERMICS]
Lions, Pierre-Louis
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Collège de France - Chaire Équations aux dérivées partielles et applications
Abstract (EN)
We consider the corrector equation associated, in homogenization theory , to a linear second-order elliptic equation in divergence form −∂i(aij∂ju) = f , when the diffusion coefficient is a locally perturbed periodic coefficient. The question under study is the existence (and uniqueness) of the corrector, strictly sublinear at infinity, with gradient in L r if the local perturbation is itself L r , r < +∞. The present work follows up on our works [7, 8, 9], providing an alternative, more general and versatile approach , based on an a priori estimate, for this well-posedness result. Equations in non-divergence form such as −aij∂iju = f are also considered, along with various extensions. The case of general advection-diffusion equations −aij∂iju + bj∂ju = f is postponed until our future work [10]. An appendix contains a corrigendum to our earlier publication [9].
Subjects / Keywords
Defects; Lp estimates; Homogenization; Elliptic PDE

Related items

Showing items related by title and author.

  • Thumbnail
    A Possible Homogenization Approach for the Numerical Simulation of Periodic Microstructures with Defects 
    Blanc, Xavier; Le Bris, Claude; Lions, Pierre-Louis (2012) Article accepté pour publication ou publié
  • Thumbnail
    Local profiles and elliptic problems at different scales with defects 
    Blanc, Xavier; Le Bris, Claude; Lions, Pierre-Louis (2015) Article accepté pour publication ou publié
  • Thumbnail
    Correctors for the homogenization of Hamilton-Jacobi equations in the stationary ergodic setting 
    Lions, Pierre-Louis; Souganidis, Panagiotis E. (2003) Article accepté pour publication ou publié
  • Thumbnail
    From the Newton equation to the wave equation in some simple cases 
    Blanc, Xavier; Le Bris, Claude; Lions, Pierre-Louis (2012) Article accepté pour publication ou publié
  • Thumbnail
    Stochastic homogenization and random lattices 
    Lions, Pierre-Louis; Le Bris, Claude; Blanc, Xavier (2007-04) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo